Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

Evaluation of carcinogenicity studies of medicinal products for human use authorised via the European centralised procedure (1995–2009)

Anita Friedrich^{a,*}, Klaus Olejniczak^b

^a Granzer Regulatory Consulting and Services, Zielstattstrasse 44, 81379 Munich, Germany
^b Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany

ARTICLE INFO

Article history: Received 25 October 2010 Available online xxxx

Keywords: Medicinal products Carcinogenicity Rodents

ABSTRACT

Carcinogenicity data of medicinal products for human use that have been authorised via the European centralised procedure (CP) between 1995 and 2009 were evaluated. Carcinogenicity data, either from long-term rodent carcinogenicity studies, transgenic mouse studies or repeat-dose toxicity studies were available for 144 active substances contained in 159 medicinal products. Out of these compounds, 94 (65%) were positive in at least one long-term carcinogenicity study or in repeat-dose toxicity studies. Fifty compounds (35%) showed no evidence of a carcinogenic potential. Out of the 94 compounds with positive findings in either carcinogenicity or repeat-dose toxicity studies, and rats, 40 were positive in rats only, and 21 were positive exclusively in mice. Long-term carcinogenicity studies in two rodent species were available for 116 compounds. Data from one long-term carcinogenicity study in rats and a transgenic mouse model were available for eight compounds. For 13 compounds, carcinogenicity data were generated in only one rodent species. One compound was exclusively tested in a transgenic mouse model. Six compounds were tumourigenic in repeat-dose toxicity studies in rats.

The majority of tumour findings observed in rodent carcinogenicity studies were considered not to be relevant for humans, either due to a rodent-specific mechanism of carcinogenicity, a high safety margin between exposures at the NOAEL (No Observed Adverse Effect Level) in rodents and recommended therapeutic doses in humans, or based on historical control data, a small effect size and lack of dose–response relationship and tumours typically observed in rodent strains used, or were considered not to be relevant for humans based on literature and clinical data or likely differences in metabolism/local concentrations between rodents and humans.

Due to the high number of rodent tumour findings with unlikely relevance for humans, the value of the currently used testing strategy for carcinogenicity appears questionable. A revision of the carcinogenicity testing paradigm is warranted.

© 2011 Elsevier Inc. All rights reserved.

Regulatory Toxicology and Pharmacology

1. Introduction

1.1. Marketing authorisation of pharmaceuticals for human use in Europe

In the European Economic Area (EEA),¹ a marketing authorisation (MA) can either be issued by the competent authority of a Member State (or EEA country) for its own territory (national authorisation) or for the entire Community (Community authorisation). Regulation (EC) No. 726/2004 of the European Parliament and of the Council lays down a centralised Community procedure for the authorisation of medicinal products, for which there is a single application to the European Medicines Agency (EMA), a single

0273-2300/\$ - see front matter \circledast 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.yrtph.2011.04.001

evaluation by the Committee for Medicinal Products for Human Use (CHMP) within the EMA and a single marketing authorisation granted by the European Commission (EC). Community authorisations can be granted for medicinal products that fall under the mandatory scope of the centralised procedure which includes medicinal products derived from biotechnology, new active substances for which the therapeutic indication is the treatment of acquired immune deficiency syndrome, cancer, neurodegenerative disorder, diabetes, auto-immune diseases or viral diseases, and applications for medicinal products designated as orphan medicinal products. Other new active substances may be accepted for consideration under the centralised procedure when the applicant shows that a new active substance or the medicinal product constitutes a significant therapeutic, scientific or technical innovation, or the granting of a Community authorisation for the medicinal product is in the interests of patients at Community level (optional scope of the centralised procedure). Generic applications of medicinal products authorised

^{*} Corresponding author. Fax: +49 89 68 98 15.

E-mail address: friedrich@granzer.biz (A. Friedrich).

¹ Member States of the European Union plus Norway, Iceland and Liechtenstein.

via the centralised procedure may also be authorised via the centralised procedure.

1.2. Carcinogenicity testing of pharmaceuticals for human use

1.2.1. Objective of carcinogenicity testing

The objective of carcinogenicity studies is to determine whether a pharmaceutical is tumourigenic in animals and whether this tumourigenic potential poses a relevant risk to humans (ICH S1A guideline; CPMP note for guidance on carcinogenic potential).

1.2.2. Need for carcinogenicity studies

Carcinogenicity studies are generally required for pharmaceuticals which are expected to be used continuously for at least six months or intermittently for the treatment of chronic or recurrent conditions (ICH S1A guideline).

Carcinogenicity studies are also necessary if there is a concern about the carcinogenic potential of a pharmaceutical. Relevant factors include: (1) previous demonstration of carcinogenic potential in the product class that is considered relevant to humans, (2) structure–activity relationship suggesting a carcinogenic risk, (3) positive genotoxicity findings, (4) evidence of preneoplastic lesions in repeat-dose toxicity studies, and (5) long-term tissue retention of the pharmaceutical or its metabolite(s) resulting in local tissues reactions or pathophysiological responses (ICH S1A guideline).

Pharmaceutical administered infrequently or for short duration, e.g. anaesthetics and radiolabelled imaging agents do not need carcinogenicity studies unless there is a cause for concern (ICH S1A guideline).

Carcinogenicity studies are also not required for therapeutics intended to treat patients with advanced cancer who have a short life-expectancy, for pharmaceuticals administered by the dermal or topical route, unless there is significant systemic exposure, and for biotechnology-derived pharmaceuticals, such as endogenous peptides and proteins especially when they are given as replacement therapy (ICH S1A guideline; ICH S9 guideline; ICH S6 guideline).

1.2.3. Test systems for carcinogenicity

1.2.3.1. Traditional approach. Long-term carcinogenicity studies in rodents have been required since the 1970s for marketing authorisation of pharmaceuticals in Europe, the USA and Japan. The studies have traditionally been conducted in mice and rats using life-time treatment.

Until now, the traditional approach of conducting long-term carcinogenicity studies in mice and rats has remained the most frequently chosen testing strategy. However, discussions have been ongoing for many years whether a single study alone would be adequate for assessing the carcinogenic potential of pharmaceuticals.

1.2.3.2. Alternative approach. The analysis of several databases did not support the concept of conducting long-term carcinogenicity in two rodent species. Positive carcinogenicity findings were often not relevant to humans. These analyses led to the introduction by ICH of a more flexible weight of evidence approach for carcinogenicity testing, that is the use of scientific judgement in the evaluation of the data derived from one long-term carcinogenicity study along with other appropriate investigations (Smith, 1996; ICH S1B guideline).

According to the ICH S1B guideline, one long-term carcinogenicity study should be supplemented by another study that supplements the long-term carcinogenicity study and provides information that is not readily available from the long-term assay. Appropriate experimental models include short or medium term *in vivo* rodent assays such as the p53+/- deficient mouse model or the TgHras2 mouse model.

The ICH S1B guideline recommends that a single long-term study (usually in the rat) should be conducted and should be complemented by a short- or medium-term *in vivo* rodent study. The short or medium-term test should provide additional information that is not readily available from the long-term assay. Usually the mouse is the preferred species to be used in a short or medium-term assay, especially when the rat is used in the long-term study.

Several transgenic mouse assays have proven useful for replacement of the second long-term study and are generally accepted by regulatory authorities in all ICH regions. Among these are the p53+/– deficient model, the TgHras2 model and the Tg.AC model. The regulatory authority concerned should always be consulted before a decision on the choice of a particular model is made.

1.2.3.3. Toxicokinetic studies. Toxicokinetic assessments are an essential component of carcinogenicity studies. They allow to relate systemic exposure levels to the toxic and/or carcinogenic findings observed in carcinogenicity studies and to contribute to the assessment of the relevance of these findings to clinical safety (ICH S3A guideline).

1.2.3.4. Mechanistic studies. Mechanistic studies are useful for the interpretation of tumour findings in a carcinogenicity study and can provide a perspective of their relevance to human risk assessment (ICH S1B guideline). As such, mechanistic studies are often provided for compounds with positive carcinogenicity findings. For example, the measurement of hormone levels, such as thyroxine or prolactin, have been used to confirm species- or rodent-specific hormonal imbalances and related tumour development induced by test compounds (ICH S1B guideline). Additional genotoxicity tests, such as the UDS test or the Comet assay, or additional studies in transgenic or neonatal mice have been used for compounds with equivocal findings in the standard battery for genotoxicity testing (ICH S2B guideline) in order to exclude a genotoxic mechanism of carcinogenicity.

1.2.3.5. Photocarcinogenicity studies. The SKH1 (hr/hr) albino hairless mouse model is currently the most widely used model to assess photocarcinogenicity in animals (CPMP note for guidance on photosafety testing). The model is designed to induce squamous cell carcinoma and their precursors by chronic UV radiation in all animals and to assess the effect of simultaneously applied test substances on the time to tumour development. The model is being used to assess the co-carcinogenic potential of dermally applied products that intended for long-term or chronically intermittent treatment of skin disorders. However, the predictivity of the albino hairless mouse model for the human situation is at present unclear (CPMP note for guidance on photosafety testing).

2. Methods

This paper presents an evaluation of carcinogenicity data of medicinal products for human use that have been authorised via the European centralised procedure (CP) between 1995 and 2009. Data were retrieved from European Public Assessment Reports (EPARs) and Summary of Product Characteristics (SPCs) as the publicly available sources of scientific and labelling information on the website of the European Medicines Agency (EMA). Additional information on the approved products that is eventually available from the scientific literature was beyond the scope of this evaluation.

Please cite this article in press as: Friedrich, A., Olejniczak, K. Evaluation of carcinogenicity studies of medicinal products for human use authorised via the European centralised procedure (1995–2009). Regul. Toxicol. Pharmacol. (2011), doi:10.1016/j.yrtph.2011.04.001

2

Table 1

Reference medicinal product	ATC code	International nonproprietary name (INN)	Pharmacotherapeutic group	Results of genotoxicity studies	Results of carcinogenicity studies	
					Mouse	Rat
		ne gastrointestinal system and related disorders	on the metabolism			
Pantozol control		Pantoprazole	Proton pump inhibitors	Not genotoxic	Positive	Positive
		tional gastrointestinal disorder				
Resolor	A03AE04	Prucalopride	Drugs acting on serotonin receptors	Not genotoxic (mutagenic in Ames test in TA100 strain)	Positive	Positive
		nd anti-nauseants				
Aloxi	A04AA05	Palonosetron	Antiemetics and antinauseants, serotonin (5HT3) antagonists	Not genotoxic	Negative	Positive
Emend ATC code A08 A	A04AD12 Anti-obesity pr	Aprepitant eparations, excluding diet pro	Antiemetics and antinauseants ducts	Not genotoxic	Negative	Positive
Xenical	A08AB01	Orlistat	Anti-obesity agents	Not genotoxic	Negative	Negative
ATC code A10 L	Drug used in d	iabetes				
Lantus	A10AE04	Insulin glargine	Insulins and analogues for injection, long-acting	Not genotoxic	Positive	Positive
Avandamet	A10BD03	Rosiglitazone/metformin	Combinations of oral blood glucose lowering medicinal	Rosiglitazone not genotoxic Metformin not gneotoxic	Rosiglitazone negative Metformin negative	Rosiglitazone positive (benign lipoma) Metformin positive (benign uterus pol
Avaglim	A10BD04	Rosiglitazone/glimepiride	products	Rosiglitazone not genotoxic Glimepiride not genotoxic	Rosiglitazone negative (positive in APCmin model) Glimepiride positive	Rosiglitazone positive Glimipiride positive
Competact	A10BD05	Pioglitazone/metformin		Pioglitazone not genotoxic Metformin not genotoxic	Pioglitazone negative Metformin negative	Pioglitazone positive Metformin positive
Tandemact	A10BD06	Pioglitazone/glimepiride		Pioglitazone not genotoxic Glimepiride not genotoxic	Pioglitazone negative Glimepiride positive	Pioglitazone positive Glimepiride positive
Efficib	A10BD07	Sitagliptin/metformin		Sitagliptin not genotoxic	Sitagliptin negative Metformin negative	Sitagliptin positive
Eucreas	A10BD08	Vildagliptin/metformin		Metformin not genotoxic Vildagliptin not genotoxic Metformin not genotoxic	Vildagliptin positive Metformin negative	Metformin positive Vildagliptin negative Metformin positive
Avandia	A10BG02	Rosiglitazone	Oral blood glucose lowering drugs; thiazolidinediones	Metformin not genotoxic Not genotoxic	Negative	Positive
Glustin	A10BG03	Pioglitazone	drugs, thiazonamediones	Not genotoxic	Negative	Positive
Xelevia	A10BH01	Sitagliptin	Dipeptidyl peptidase 4 (DPP-4) inhibitors	Not genotoxic	Negative	Positive
Galvus	A10BH02	Vildaglintin	minutors	Not genetovic	Positive	Nogativo
Onglyza	A10BH02 A10BH03	Vildagliptin Saxagliptin		Not genotoxic Not genotoxic	Negative	Negative Negative
NovoNorm	A10BX02	Repaglinide	Other blood glucose lowering drugs excluding insulins	Not genotoxic	Negative	Positive
Starlix	A10BX03	Nateglinide	arago excluding illouillo	Not genotoxic	Negative	Negative
Byetta	A10BX03	Exenatide		Not genotoxic	Negative	Positive
Victoza	A10BX04	Liraglutide		Not genotoxic	Positive	Positive
		ry tract and metabolism prod	ucts	Hot genotoxic	rositive	i osicive
Zavesca	A16AX06	Miglustat	Other alimentary tract and metabolism products	Not genotoxic	Positive	Positive
Kuvan	A16AX07	Sapropterin	F Budets	Genotoxic (in vitro)	Negative	Negative
ATC code B Blo						
ATC code B01 A		0 0				
Plavix	B01AC04	Clopidogrel	Platelet aggregation inhibitors excluding heparin	Not genotoxic	Negative	Negative
Ventavis	B01AC11	Iloprost	excluding hepatin	Not genotoxic	Negative	Negative
Efient	B01AC22	Prasugrel		Not genotoxic	Positive	Negative
2	20111022			Senotome		

ARTICLE

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

product		nonproprietary name (INN)				
		()			Mouse	Rat
ATC code C Card						
ATC code C01 Co		·	Other condice meansations	Not constants	Negative	Negative
Corlentor Ranexa	C01EB17 C01EB18	lvabradine Ranolazine	Other cardiac preparations	Not genotoxic Not genotoxic (clastogenic in chromo- somal aberration test)	Negative Negative	Negative Positive
ATC code CO2 A1	nti-hvnertensi	ives		somer uper ation test)		
Polaris	C02KX02	Ambrisentan	Other antihypertensives	Not genotoxic	Negative	Negative
Tracleer	C02KX01	Bosentan	51	Not genotoxic	Positive	Positive
Thelin	C02KX03	Sitaxentan sodium		Not genotoxic (clastogenic <i>in vitro</i> at cytotoxic concentrations)	p53+/- model negative	Positive
ATC code C03 Di	iuretics					
Samsca	C03XA01	Tolvaptan	Vasopressin antagonists	Not genotoxic	Negative	Negative
ATC code C09 A	gents acting o	on the renin-angiotensin systen	n			
Aprovel	C09CA04	Irbesartan	Angiotensin II antagonists	Not genotoxic	Negative	Negative
Micardis	C09CA07	Telmisartan		Not genotoxic	Negative	Negative
CoAprovel	C09DA04	Irbesartan/ hydrochlorothiazide	Angiotensin II antagonists, combinations	Hydrochlorothiazide equivocal	Irbesartan negative hydrochlorothiazide positive	Irbesartan negative hydrochlorothiazide negative
Micardis Plus	C09DA07	Telmisartan/	Angiotensin II antagonists,	Telmisartan not genotoxic	Telmisartan negative	Telmisartan negative
		hydrochlorothiazide	diuretics	hydrochlorothiazide equivocal	hydrochlorothiazide positive	hydrochlorothiazide negative
Exforge	C09DB01	Amlodipine besylate/ valsartan	Calcium channel blockers, angiotensin II antagonists	Amlodipine not genotoxic Valsartan not genotoxic	Amlodipine negative Valsartan negative	Amlodipine negative valsartan negative
Exforge HCT	C09DX01	Amlodipine besylate/ valsartan/ hydrochlorothiazide	Angiotensin II antagonists, plain (valsartan), combinations with dihydropyridine derivatives (amlodipine) and thiazide	Amlodipine not genotoxic Valsartan not genotoxic Hydrochlorothiazide equivocal	Amlodipine negative Valsartan negative Hydrochlorothiazide positive	Amlodipine negative valsartan negati hydrochlorothiazide negative
D :	6001/400	A11-1-	diuretics (hydrochlorothiazide)		A1	NY
Riprazo Rasilez HCT	C09XA02	Aliskiren Aliskiren hemifumarate/ budroshlorothiarida	Renin inhibitors Renin inhibitors, combinations	Not genotoxic Aliskrien not genotoxic hydrochlorothiarida aguiyaash	Alternative model negative Aliskrien alternative model	Negative Aliskrien negative hydrospherothiaride pogative
		hydrochlorothiazide	with diuretics	hydrochlorothiazide equivocal	negative Hydrochlorothiazide positive	hydrochlorothiazide negative
ATC code C10 Li	nid modifying	a gents			positive	
Cholestagel	C10AC04	Colesevelam	Bile acid sequestrants	Not genotoxic	Negative (low survival rate)	Positive
Tredaptive	C10AD52	Nicotinic acid/laropiprant	Nicotinic acid and derivatives	Nicotinic acid not genotoxic (literature) laropiprant not genotoxic	Nicotinic acid negative (literature) laropiprant positive	Nicotinic acid negative (literature) laropiprant negative
ATC code D Deri	matologicals					
	•	l chemotherapeutics for derma	tological use			
Aldara	D06BB10	Imiquimod	Chemotherapeutics for topical use, antiviral	Not genotoxic	Topical negative	Not performed
ATC code D11 (Other dermat	tological preparations				
Protopic	D11AX14	Tacrolimus	Other dermatologicals	Not genotoxic	Topical positive PhotoCA positive oral negative	Topical not performed oral negative
Vaniqa	D11AX16	Eflornithine		Not genotoxic	Topical negative photoCA negative oral negative	Topical not performed oral negative
ATC code G Geni ATC code G02 O		estem and sex hormones			U U	
Tractocile	G02CX01	Atosiban	Other gynaecologicals	Not genotoxic	Not performed	Positive
ATC code G03 Se EVRA	ex hormones o G03AA13	and modulators of the genital s Norelgestromin/ethinyl	system Norelgestromin and estrogen	Norelgestromin not genotoxic	Not performed	Combination of norgestimate and eth
		estradiol		ethinyl estradiol not genotoxic		estradiol positive combination negative in a 10-year n

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

4

Reference medicinal product	ATC code	International nonproprietary name (INN)	Pharmacotherapeutic group	Results of genotoxicity studies	Results of carcinogenicity studies	
F		()			Mouse	Rat
						study
Evista	G03XC01	Raloxifene hydrochloride	Selective oestrogen receptor modulator (SERM)	Not genotoxic	Negative	Negative
Fablyn	G03XC01	Lasofoxifene		Not genotoxic	Positive	Positive
Conbriza	G03XC02	Bazedoxifene		Not genotoxic	TgHras2 model positive	Positive
ATC code G04 l	Urologicals					
Emselex	G04BD10	Darifenacin	Urinary antispasmodics	Not genotoxic	Negative	Positive (considered not treatment-relate
Toviaz	G04BD11	Fesoterodine		Not genotoxic	Negative	Negative
Viagra	G04BE03	Sildenafil	Drugs used in erectile	Not genotoxic	Negative	Negative
Revatio			dysfunction			
Cialis	G04BE08	Tadalafil		Not genotoxic	Negative (numerical increase)	Negative (numerical increase)
Levitra	G04BE09	Vardenafil		Not genotoxic	Negative	Negative
ATC code H Syst	temic hormon	al preparations, excluding sex	hormones and insulins			
ATC code H01 P	Pituitary and H	ypothalamic hormones and a	nalogues			
Increlex	H01AC03	Mecasermin	Somatropin and somatropin	Not genotoxic	Not performed	Positive
			agonists			
ATC code H05 C	Calcium home	ostasis				
Forsteo	H05AA02	Teriparatide	Parathyroid hormones and analogues	Not genotoxic	Not performed	Positive
Preotact	H05AA03	Parathyroid hormone (rDNA)	0	Not genotoxic	Not performed	Positive
Mimpara	H05BX01	Cinacalcet	Anti-parathyroid agents	Not genotoxic	Negative	Negative
ATC code J Anti-			· ···· F ·····························			
ATC code J02 An		-				
Vfend	J02AC03	Voriconazole	Triazole derivatives	Not genotoxic	Positive	Positive
Noxafil	102AC04	Posaconazole		Not genotoxic	Negative	Positive
ATC code J05 An	J			not genotome		
Rebetol	J05AB04	Ribavirin	Nucleosides and nucleotides excluding reverse transcriptase inhibitors	Genotoxic	Negative	Positive (upper range of historical control
Invirase	J05AE01	Saquinavir	Protease inhibitors	Not genotoxic	Negative	Negative
Crixivan	J05AE02	Indinavir		Not genotoxic	Negative	Positive
Norvir	J05AE03	Ritonavir		Not genotoxic	Positive	Negative
Viracept	J05AE04	Nelfinavir		Not genotoxic	Negative	Positive
Agenerase	J05AE05	Amprenavir		Not genotoxic	Positive	Positive
Kaletra	J05AE06	Lopinavir/Ritonavir		Not genotoxic	Combination positive	Combination negative
Telzir	J05AE07	Fosamprenavir		Not genotoxic	Positive	Positive
Reyataz	J05AE08	Atazanavir sulphate		Not genotoxic (clastogenic in chromo- somal aberration test)	Positive	Negative
Aptivus	J05AE09	Tipranavir		Not genotoxic	Positive	Positive
Prezista	J05AE10	Darunavir		Not genotoxic	Positive	Positive
Zerit	J05AF04	Stravudine	Nucleoside and nucleotide reverse transcriptase inhibitors	Genotoxic	Positive	Positive
Epivir	J05AF05	Lamivudine	reverse transcriptase minuffors	Genotoxic	Negative	Negative
•	J05AF06	Abacavir sulphate		Genotoxic	Positive	Positive
Ziagen	J05AF00 J05AF07	Tenofovir disoproxil		Genotoxic	Positive	Positive (benign lipoma, within historical
-	J05/11/07			GENOLOXIC		control range)
Viread	105 4 500	Ad-Contradict 1		Constantin		Negative
Ziagen Viread Hepsera	J05AF08	Adefovir dipivoxil		Genotoxic	Negative	
Viread Hepsera Emtriva	J05AF09	Emtricitabine		Not genotoxic	Negative	Negative
Viread	J05AF09 J05AF10	Emtricitabine Entecavir		Not genotoxic Genotoxic (clastogenic in chromo-somal aberration test)	Negative Positive	Negative Positive
Viread Hepsera Emtriva	J05AF09	Emtricitabine		Not genotoxic Genotoxic (clastogenic in chromo-somal	Negative	Negative

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

(continued on next page) сī

European centralised procedure (1995-2009), Regul. Toxicol. Pharmacol. (2011), doi:10.1016/j.yrtph.2011.04.001

Table 1 (continued)

Reference medicinal product	ATC code	International nonproprietary name (INN)	Pharmacotherapeutic group	Results of genotoxicity studies	Results of carcinogenicity studies	
product		(1111)			Mouse	Rat
Stocrin	J05AG03	Efavirenz	Non-nucleoside reverse transcriptase inhibitors	Not genotoxic	Positive	Negative
Intelence	J05AG04	Etravirine		Not genotoxic	Positive	Negative
Tamiflu	J05AH02	Oseltamivir	Neuraminidase inhibitors	Not genotoxic	Negative Dermal Tg.AC model negative	Positive (trend)
Combivir	J05AR01	Lamivudine/zidovudine	Antivirals for treatment of HIV infections, combinations	Lamivudine genotoxic Zidovudine genotoxic	Lamivudine negative zidovudine positive	Lamivudine negative Zidovudine positiv
Kivexa	J05AR02	Abacavir sulphate/ lamivudine		Abacavir genotoxic lamuvudine genotoxic	Abacavir positive lamivudine negative	Abacavir positive Lamivudine negative
Truvada	J05AR03	Emtricitabine/tenofovir disoproxil		Emtricitabine not genotoxic Tenofovir genotoxic	Emtricitabine negative tenofovir positive	Emtricitabine negative Tenofovir negative
Trizivir	J05AR04	Abacavir sulphate/		Lamivudine genotoxic	Lamivudine negative	Lamivudine negative
		lamivudine/zidovudine		zidovudine genotoxic abacavir genotoxic	zidovudine positive abacavir positive	zidovudine positive abacavir positive
Atripla	J05AR06	Efavirenz/emtricitabine/		Efavirenz not genotoxic	Efavirenz positive	Efavirenz negative
· · · · · · · · · · · · · · · · · · ·	,	tenofovir disoproxil		emtricitabine not genotoxic	emtricitabine negative	emtricitabine negative
		teneretin alsopteria		tenofovir genotoxic	tenofovir positive	tenofovir negative
Isentress	J05AX08	Raltegravir	Other antivirals	Not genotoxic	Negative	Negative
Celsentri	J05AX09	Maraviroc		Not genotoxic	TgHras2 model negative	Positive
		nd immunomodulating agents		Not genotoxie	iginusz model negative	rostive
ATC code L01 A	-					
Xeloda	L01BC06	Capecitabine	Antimetabolites	Genotoxic	Negative	Not performed
	L01XE02	Gefitinib	Protein kinase inhibitors	Not genotoxic	Positive	
Iressa			Protein kinase minditors			Positive
Afinitor Onsenal	L01XE10 L01XX33	Everolimus Celecoxib	Other antineoplastic agents	Not genotoxic Not genotoxic	Positive Positive (within historical control	Negative Positive (within historical control values
ATC and LOD I	u da anina shan				values)	
ATC code LO2 E			Ant: contrologi	Not monotoria	Desitive	Negative
Fareston	LO2BA02	Toremifene	Anti-oestrogens	Not genotoxic	Positive	Negative
Faslodex	L02BA03	Fulvestrant		Not genotoxic	Positive (literature)	Positive
Firmagon	L02BX02	Degarelix	Other hormone antagonists and related agents	Not genotoxic	Positive	Positive
ATC code L04 I						
CellCept	L04AA06	Mycophenolate mofetil	Selective immunosuppressive	Genotoxic	Negative	Negative
Arava	L04AA13	Leflunomide	agents	Leflunomide not genotoxic minor metabolite genotoxic in vitro	Positive	Negative
Rapamune	L04AA10	Sirolimus	Calcineurin inhibitors	Not genotoxic	Positive	Positive
Orencia	L04AA24	Abatacept		Not genotoxic	Positive	Not performed
Advagraf	L04AD02	Tacrolimus		Not genotoxic	Oral negative	Oral negative
					topical not performed	topical positive
Modigraf	L04AD02	Tacrolimus	Other immunosuppressive agents	Not genotoxic	Oral negative topical not performed	Oral negative topical positive
Thalidomide Celgene	L04AX02	Thalidomide		Not genotoxic	Negative	Negative
ATC code M Mi ATC code M05	Drugs for trea	tment of bone diseases				
Zometa	M05BA08	Zoledronic acid	Bisphosphonates	Not genotoxic	Positive	Negative
Bondenza	M05BA06	Ibandronic acid		Not genotoxic	Negative	Negative
Fosavance	M05BB03	Alendronate sodium/	Bisphosphonates, combinations	Alendronate not genotoxic Colecalciferol	Alendronate negative	Alendronate negative
Osian G	MOEDCOC	Colecalciferol	Deve we when the state of the	not genotoxic	colecalciferol not performed	colecalciferol not performed
Osigraft	M05BC02	Eptotermin alfa	Bone morphogenetic protein	Not genotoxic (in vitro)	Not performed	Positive

ARTICLE

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

6

Reference medicinal product	ATC code	International nonproprietary name (INN)	Pharmacotherapeutic group	Results of genotoxicity studies	Results of carcinogenicity studies	
					Mouse	Rat
Osseor	M05BX03	Strontium ranelate	Other drugs affecting bone structure and mineralisation	Not genotoxic	Negative	Positive
ATC code N Net						
ATC code N01						
Qutenza	N01BX04	Capsaicin	Other local anesthetics	Not genotoxic (weakly positive in mouse lymphoma assay)	Dermal Ig.AC model negative	Not performed
ATC code N03						
Inovelon	N03AF03	Rufinamide	Carboxamide derivatives	Not genotoxic	Positive	Negative
Exalief	N03AF04	Eslicarbazepine acetate		Not genotoxic (clastogenic in some in vitro assays)	Positive	Not performed
Keppra	N03AX14	Levetiracetam	Other antiepileptics	Not genotoxic	Negative	Negative
Zonegran	N03AX15	Zonisamide		Not genotoxic	Negative	Negative
Lyrica	N03AX16	Pregabalin		Not genotoxic	Positive	Negative
Diacomit	N03AX17	Stiripentol		Not genotoxic (clastogenic <i>in vitro</i> at cytotoxic concentrations)	Positive	Negative
Vimpat	N03AX18	Lacosamide		Not genotoxic (clastogenic in mouse lymphoma assay)	Negative	Negative
ATC code N04	Anti-Parkinson	drugs		iyinpitotila assay)		
Stalevo	N04BA03	Levodopa/carbidopa/	Dopa and dopa derivatives	Entacapone genotoxic (clatogenic	Entacapone negative	Entacapone positive
Statevo	110 15/105	entacapone	Dopu and dopu derivatives	in vitro) levodopa/Carbidopa not genotoxic	levodopa/carbidopa not performed	levodopa/carbidopa negative (literature
				(literature)		
Sifrol	N04BC05	Pramipexole	Dopamine agonists	Not genotoxic	Negative	Positive
Neupro	N04BC09	Rotogotine	Dopannie agenous	Not genotoxic (clastogenic in mouse lymphoma assay)	Negative	Positive
Azilect	N04BD02	Rasagiline	Monoamine oxidase B inhibitors	Genotoxic (clastogenic <i>in vitro</i>)	Positive	Negative
Tasmar	N04BX01	Tolcapone	Anti-Parkinson agents	Not genotoxic	Negative	Positive
Comtess	N04BX02	Entacapone	Auto-rankinson agents	Genotoxic (clastogenic <i>in vitro</i>)	Negative	Positive
ATC code N05 I		Entacapone		Genotoxie (clastogenie in vitro)	Negative	1 USHIVE
Zyprexa	N05AH03	Olanzapine	Diazepines, oxazepines and	Not genotoxic	Positive	Positive
Zypadhera	N05AH03	Olanazapine	thiazepines	Not genotoxic	Depot form not performed	Depot form negative
		*	•		(technical reasons)	
Abilify	N05AX12	Aripiprazole	Other antipsychotics	Not genotoxic	Positive	Positive
Invega	N05AX13	Paliperidone		Not genotoxic	Positive	Positive
Zerene	N05CF03	Zaleplon	Benzodiazepine related drugs	Not genotoxic	Negative	Negative
Circadin ATC code N06 I			Melatonin receptor agonists	Not genotoxic	Tg NK model negative	Positive
Exelon	N06DA03	Rivastigmine	Anticholinesterases	Not genotoxic	Negative	Negative
Ariclaim	N06AX21	Duloxetine	Other antidepressants	Not genotoxic	Negative	Negative (multinucleated liver cells)
Thymanax	N06AX22	Agomelatine		Not genotoxic (clastogenic in chromo- somal aberration test)	Positive	Positive
Ebixa ATC code N07 (N06DX01	Memantine	Other anti-dementia drugs	Not genotoxic	Negative	Negative
Champix	N07BA03	Varenicline tartrate	Active substances used in nicotine dependence	Not genotoxic	Negative	Positive
Suboxone	N07BC51	Buprenorphine hydrochloride/naloxone hydrochloride	Drugs used in opioid dependence	Combination not genotoxic	Not performed	Combination positive
Dilutele	N07XX02	Riluzole	Other nervous system drugs	Major active metabolite genotoxic	Negative	Negative
Rilutek						

(continued on next page)

ARTICLE

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

ATC code	International nonproprietary name (INN)	Pharmacotherapeutic group	Results of genotoxicity studies	Results of carcinogenicity studies	
	(IININ)			Mouse	Rat
N07XX04	Sodium oxybate		Not genotoxic	Sodium oxybate not performed γ- butyrolactone equivocal (NTP study)	Sodium oxybate positive (upper range historical control values) γ-butyrolactor negative
		Corticostoroids	Not gopotovic	Intrançal pogativo	Intrançal pogativo
		controsteroids	Not genotoxic	intransar negative	Intransal negative
R06AX27;	Desloratadine and	Antihistamines-H1 antagonist;	Not genotoxic	Negative	Not performed
R01BA52	Pseudoephedrine (as sulphate)	nasal decongestants for systemic use group			
ry organs	· ·				
•					
S01EC04	Brinzolamide	Antiglaucoma preparations and miotics, carbonic anhydrase inhibitors	Not genotoxic (clastogenic in mouse lymphoma assay)	Oral positive	Oral negative
S01ED51	Travoprost/timolol	Antiglaucoma preparations and miotics-beta-blocking agents- timolol combinations	Travoprost not genotoxic Timolol genotoxic (low potential)	Subcutaneous travoprost negative oral timolol positive	Subcutaneous travoprost negative oral timolol positive
S01ED51	Bimatoprost/timolol		Bimatoprost not genotoxic Timolol genotoxic (low potential)	Oral bimatoprost negative oral timolol positive	Oral bimatoprost negative oral timolol positive
S01ED51	Brinzolamide/timolol		Brinzolamide not genotoxic timolol genotoxic (low potential)	Oral brinzolamide positive oral timolol positive	Oral brinzolamide negative oral timolol positive
S01EE03	Bimatoprost	Antiglaucoma preparations and miotics – prostaglandin analogues	Not genotoxic	Negative	Negative
S01EE04	Travoprost		Not genotoxic	Negative	Negative
S01GX06	Emedastine	Decongestants and antiallergics; other antiallergics	Not genotoxic	Negative (numerical increase)	Negative
S01GX09 us	Olopatadine	-	Not genotoxic	Negative	Negative
	eutic products				
V03AE02	Sevelamer (carbonate)	Treatment of hyperphosphataemia	Not genotoxic (clastogenic in chromosomal aberration test)	Negative (within historical control range)	Positive
V03AC03	Deferasirox	Iron chelating agents	Not genotoxic	p53+/- model negative	Negative
1	~ .				-
-		- Long-acting 82 adrenorgie	-		Positive Positive
-	muacateror	agonist	NOL SCHOLOXIC	iginasz model negative	FUSILIVE
	ratory system sal preparati R01AD12 tihistamine R06AX27; R01BA52 ry organs athalmologic S01EC04 S01ED51 S01ED51 S01ED51 S01ED51 S01EE03 S01EE04 S01GX06 S01GX06 S01GX09 us other therap V03AE02 V03AC03	ratory system sal preparations R01AD12 Fluticasone furoate tithistamines for systemic use R06AX27; Desloratadine and R01BA52 Pseudoephedrine (as sulphate) ry organs nthalmologicals S01EC04 Brinzolamide S01ED51 Travoprost/timolol S01ED51 Bimatoprost/timolol S01ED51 Brinzolamide/timolol S01EC3 Bimatoprost S01EC4 Travoprost S01EC4 Travoprost S01GX06 Emedastine S01GX09 Olopatadine us other therapeutic products V03AE02 Sevelamer (carbonate)	ratory system sal preparations R01AD12 Fluticasone furoate R06AX27; Desloratadine and R01BA52 Pseudoephedrine (as sulphate) use group ry organs ththalmologicals S01EC04 Brinzolamide Antiglaucoma preparations and miotics, carbonic anhydrase inhibitors S01ED51 Travoprost/timolol Antiglaucoma preparations and miotics-beta-blocking agents- timolol, combinations S01ED51 Brinzolamide/timolol S01ED51 Brinzolamide/timolol S01EE03 Bimatoprost S01EC04 Travoprost S01EC04 Travoprost S01EC04 Travoprost S01EC05 Bimatoprost S01EC04 Travoprost S01EC04 Travoprost S01EC04 Travoprost S01EC04 Travoprost S01GX06 Emedastine Decongestants and antiallergics; other antiallergics S01GX09 Olopatadine us other therapeutic products V03AE02 Sevelamer (carbonate) Treatment of hyperphosphataemia V03AC03 Deferasirox Iron chelating agents I	ratory system sal preparations R01AD12 Fluticasone furoate Corticosteroids Not genotoxic R01AD12 Fluticasone furoate Corticosteroids Not genotoxic R01BA52 Pseudoephedrine (as sulphate) nasal decongestants for systemic use group Not genotoxic ry organs subpate) use group Not genotoxic (clastogenic in mouse linhibitors S01EC04 Brinzolamide Antiglaucoma preparations and miotics, carbonic anhydrase inhibitors Not genotoxic (clastogenic in mouse lymphoma assay) S01ED51 Bimatoprost/timolol Antiglaucoma preparations and miotics - beta-blocking agents- timolol, combinations Travoprost not genotoxic Timolol genotoxic (low potential) S01ED51 Bimatoprost/timolol Bimatoprost or genotoxic Timolol genotoxic (low potential) S01ED51 Bimatoprost Antiglaucoma preparations and miotics - prostaglandin analogues Not genotoxic S01ED51 Bimatoprost Antiglaucoma preparations and miotics - prostaglandin analogues Not genotoxic S01E04 Travoprost Decongestants and antiallergics; other antiallergics Not genotoxic S01CX06 Emedastine Decongestants and antiallergics; other antiallergics Not genotoxic S01GX09	N072X04 Sodium oxybate Not genotoxic Sodium oxybate not performed γ - butyrolactone equivocal (NTP study) varoy system sid preparations Corticosteroids Not genotoxic Intransal negative R01AD12 Fluticasone furoate tithistamines for systemic sulphate) Corticosteroids Not genotoxic Intransal negative R01AD2 Pseudoephedrine (as sulphate) Antihistamines-H1 antagonist; nasal decongestants for systemic use group Not genotoxic Negative S01ED51 Travoprost/timolol Antiglaucoma preparations and miotics, carbonic anhydrase inhibitors Not genotoxic (clastogenic in mouse lymphoma assay) Oral positive S01ED51 Bimatoprost/timolol Antiglaucoma preparations and miotics-beta-blocking agents- timolol, combinations Not genotoxic (low potential) Brinzolamide not genotoxic Timolol genotoxic (low potential) Subcutaneous travoprost negative oral timolol positive S01ED51 Bimatoprost Antiglaucoma preparations and miotics - prostaglandin analogues Not genotoxic (low potential) Oral bimatoprost negative oral timolol positive S01EE04 Travoprost Decongestants and antiallergics: other antiallergics Not genotoxic Negative S01E050 Depatadine analogues Not genotoxic thromosomal aberration test) Negative (within historical control range) S01E04 Travoprost Treatment of hyperphosphatemia chromosomal aberration test) Negative

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

It is important to note that this analysis is based on information available for centrally approved pharmaceuticals in the EEA and does not consider carcinogenicity studies for medicinal products that were approved via national procedures. Compounds which were tested for carcinogenicity by pharmaceutical companies but which have not been pursued or approved for marketing were also not considered in this analysis.

All medicinal products authorised via the CP between 1995 and 2009 were analysed with respect to the number of products and active substances with genotoxicity and carcinogenicity data, the tests systems used for their assessment, and the potential relevance of the data for the human situation and their impact on the labelling.

3. Results

3.1. Overview of carcinogenicity data

3.1.1. Medicinal products authorised via the centralised procedure

According to the alphabetical listing of medicinal products that have an EPAR on the EMA website, the total number of centrally authorised medicinal products until end of 2009 was 521. Out of the 521 authorised medicinal products, 146 (28%) products account for duplicate, informed consent, generic or biosimilar products, for which no new carcinogenicity data have been generated. Carcinogenicity data were available for 280 medicinal products accounting for 54% of all authorised products.

3.1.2. Fixed combination medicinal products

Fixed combinations are used in oral blood glucose lowering medicinal products, in blood pressure lowering products and topical antiglaucoma preparations (see Table 1 for reference products). All active substances contained in these fixed combination medicinal products have been individually tested for genotoxicity and carcinogenicity.

In the treatment of human immunodeficiency virus (HIV-1) infected patients, the combined use at least three active substances is currently considered essential based on the inherent high mutation rate in HIV (guideline on carcinogenicity evaluation of medicinal products for the treatment of HIV infection). Therefore, fixed combinations have been developed aiming at improving adherence by reducing pill burden (Guideline on the clinical development of medicinal products for the treatment of HIV infection) (see Table 1 for reference products). With the exception of lopinavir/ritonavir, which were tested in combination, genotoxicity and carcinogenicity studies were performed using the individual active substances. This is in accordance with the guideline on carcinogenicity evaluation of medicinal products for the treatment of HIV infection, which does not require carcinogenicity studies of drug combination, if the individual components have been adequately tested.

Active substances that have been tested for carcinogenicity in combination include norgestimate/ethinylestradiol and buprenorphin hydrochloride/naloxon hydrochloride (see Table 1 for reference products).

3.1.3. Reference medicinal products

Reference medicinal products included medicinal products containing new chemical entities (NCEs), combinations of NCEs, NCEs in combination with known active substances or products containing known active substances developed for new indications.

375 centrally authorised reference medicinal products had a valid MA a by the end of 2009. Carcinogenicity data were available for 144 individual compounds or fixed combinations that were contained in 159 reference medicinal products (Table 1). The higher number of reference medicinal products compared with the number of active substances is either due to the combination of active substances in different products, e.g. hydrochlorothiazide in combination with irbesartan (CoApprovel) and telmisartan (Micardis Plus), or due to the fact that some compounds have been approved in different indication and/or are available in different formulation, e.g. the use of sildenafil in Viagra and Revatio for the treatment of erectile dysfunction and arterial pulmonary hypertension, respectively, and the use of tacrolimus in Protopic and Advagraf for topical treatment of atopic dermatitis and systemic treatment of transplant rejection following organ transplantation, respectively.

Thus, from all reference medicinal products authorised via the CP between 1995 and 2009, carcinogenicity data have been generated for approximately 42% (159/375). Products that have not been tested for carcinogenicity include biotechnology-derived pharmaceuticals such as endogenous peptides and proteins, monoclonal antibodies and vaccines produced by recombinant DNA technology. This is consistent with current requirements (ICH S1A guideline; ICH S6 guideline). Furthermore, carcinogenicity testing is not required for products intended for short-term clinical use and for anti-neoplastic agents for the treatment of patients with short life expectancy.

Carcinogenicity studies in at least one rodent species are available for 138 compounds that were either tested individually (in the majority of cases) or in combination. Six additional compounds exhibited neoplastic lesions in repeat-dose toxicity studies and it was thus considered that carcinogenicity studies would not need to be performed for these compounds (Table 2).

Conventional long-term carcinogenicity studies in mice and rats are available for the majority of compounds, while transgenic mouse models were infrequently used in carcinogenicity testing. A number of compounds were tested for carcinogenicity in only one rodent species (Table 2).

Photocarcinogenicity data have been provided for two compounds intended for dermal use (ATC code D11). The studies were performed in addition to conventional long-term rodent carcinogenicity studies using the systemic and dermal route of administration (see Table 1).

Out of the 144 compounds tested for carcinogenicity, 50 (35%) yielded negative results and 94 (65%) were positive in at least one carcinogenicity study or in repeat-dose toxicity studies (Table 3).

Two long-term carcinogenicity studies were available for 116 compounds, 44 of which were negative and 32 of which were positive in both mice and rats. Twenty-two compounds were positive in rats only and 18 were positive exclusively in mice (Table 3).

For 13 compounds, carcinogenicity data were available in only one rodent species. Within this group, three compounds were negative in mice and one compound in rats, while two and seven compounds were positive in mice and rats, respectively (Table 3). One fixed combination product for contraceptive treatment (ATC code G3) yielded positive results in rats, but was shown to be negative in a monkey study of 10-year duration (see Table 1).

Transgenic mouse models were infrequently used as a replacement of a long-term carcinogenicity study. Data from one longterm carcinogenicity study in rats and a transgenic mouse model

Table 2

Categorisation of active substances (INN) with carcinogenicity data according to type and number of studies performed.

Active substances with carcinogenicity data	Number	%
Two long-term carcinogenicity studies	116	81
One long-term carcinogenicity study in rats and one transgenic mouse study	8	5.5
One long-term carcinogenicity study in mice or rats	13	8.5
One transgenic mouse model	1	1
No carcinogenicity studies performed	6	4
Total	144	100

Table 3

Categorisation of active substances (INN) with carcinogenicity data according to study results.

Active substances with carcinogenicity data	Number	%
All compounds - Negative in mice and/or rats - Positive in mice and/or rats	144 50 94	100 35 65
Two long-term carcinogenicity studies - Negative in mice and rats - Positive in mice and rats - Negative in mice and positive in rats - Positive in mice and negative in rats	116 44 32 22 18	80.5 30.5 22 15 12.5
One long-term carcinogenicity study in rats and one transgenic mouse study - Negative in mice and rats - Positive in mice and rats - Positive in rats and negative in mice - Negative in rats and positive in mice	8 2 1 5 0	
One long-term carcinogenicity study in mice or rats - Negative in mice - Negative in rats - Positive in mice - Positive in rats	13 3 1 2 7	
One transgenic mouse study - Negative - Positive	1 1 0	

were available for eight compounds. The TgrasH2 mouse model was used in four studies followed by the p53+/- model which was used twice.

Two compounds showed negative results in the long-term carcinogenicity study in rats and the transgenic mouse study, while five were positive in the long-term rat study and negative in the transgenic mouse study. Only one compound was positive in both the long-term rat study and the transgenic mouse study (Table 3).

For one compound, the only carcinogenicity data available were from a transgenic mouse study, which showed negative results (Table 3).

Of the two compounds tested for photocarcinogenicity in the albino hairless mouse model, one exhibited a negative and one a positive result.

With regard to the rodent species that produced positive carcinogenicity findings, 33 out of 94 compounds were positive in both mice and rats (35%), 40 were positive in rats (43%) and 21 (22%) were positive in mice.

3.2. Overview of genotoxicity data

Out of the 144 compounds with carcinogenicity data, 114 were clearly negative in the standard battery of genotoxicity tests (ICH S2B guideline) or in a more comprehensive test battery. Twelve compounds had positive findings in one or more *in vitro* test(s); however, when considering the results of all genotoxicity tests, the weight of evidence suggested that these compounds had no genotoxic potential. For 18 compounds, the overall results of genotoxicity tests indicated that the compounds may have intrinsic genotoxic properties (Table 4). A more detailed discussion of the compounds with positive or equivocal genotoxicity findings can be found in section 3.3.2.1.

3.3. Individual active substances tested for carcinogenicity

The individual 138 compounds tested for carcinogenicity are shown in Table 1.

In Table 1, active substances (international nonproprietary name, INN) and their reference medicinal products are grouped according to their ATC code and pharmacotherapeutic group. Both the results of genotoxicity and carcinogenicity studies are presented.

In term of genotoxicity, the overall assessment of genotoxicity as stated in the EPAR and/or SPC is presented for each individual compound. However, positive findings in individual genotoxicity studies were also indicated.

With regard to tumour findings in carcinogenicity studies in mice and rats, both benign and malignant neoplasms have been considered in the evaluation. Carcinogenicity studies were assessed as positive if statistically significant increases in tumour incidences were observed. Studies with statistically significant tumour increases that fell within the range of historical control data were classified as positive.

The six compounds exhibiting neoplastic lesions in repeat-dose toxicity studies are shown in Table 5.

3.3.1. Active substances with negative carcinogenicity findings

Out of the 144 compounds with carcinogenicity data, 50 yielded negative results (Table 3). Forty-four compounds were negative in long-term carcinogenicity studies in mice and rats, while two compounds were negative in a long-term study in rats and a transgenic mouse model (Table 3). For four compounds, negative long-term carcinogenicity data were available in only one rodent species (Table 3). One compound was exclusively tested in a transgenic mouse model and was shown to be negative (Table 3). The individual compounds with negative carcinogenicity findings are listed in Table 6.

3.3.2. Active substances with positive carcinogenicity findings

Out of the 144 compounds tested for carcinogenicity, 94 (65%) were positive in at least one carcinogenicity study or in repeatdose toxicity studies (Table 3).

3.3.2.1. Compounds with positive or equivocal genotoxicity findings. The majority of compounds evaluated for carcinogenicity were found to be devoid of genotoxic properties (Table 4). For 18 compounds, the EPARs concluded that they may have intrinsic genotoxic properties according to the results of the genotoxicity testing battery (Table 7). However, a carcinogenic risk for humans was excluded for those compounds with negative results in long-term rodent carcinogenicity studies and for compounds with rodent-specific tumour findings in carcinogenicity studies (Table 7). The majority of the compounds with positive or equivocal genotoxicity tests and positive long-term rodent carcinogenicity studies are anti-retroviral agents for the treatment of HIV-1 infections and belong to the two classes of anti-retroviral agents

Table 4

Genotoxicity findings for active substances (INN) with carcinogenicity data.

Active substances with carcinogenicity data	Number	%
All compounds	144	100
- Negative in a battery of genotoxicity tests	114	79
 Positive in one or more genotoxicity test(s) 	30	21
- Compounds for which the overall results of genotoxicity tests suggested that they have no genotoxic potential	12	10.5
- Compounds for which the overall results of genotoxicity tests suggested that they have intrinsic genotoxic properties	18	12.5

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 5

Reference medicinal products for which neoplastic changes were observed in repeat-dose toxicity studies.

Reference medicinal product	ATC code	International nonproprietary name (INN)	Pharmacotherapeutic group	Results of genotoxicity studies	Results of repeat-dose toxicity studies
ATC code A10 Drug	used in diabet	es			
Novorapid	A10AB05	Insulin aspart	Insulins and analogues for injection, fast-acting	Not genotoxic	Positive in 12-month toxicity study in rats
Protaphane	A10AC01	Insulin human (rDNA)	Insulins and analogues for injection, intermediate-acting, insulin (human)	Not genotoxic	Positive in 12-month toxicity study in rats
ATC code J02 Anti-m	ycotics for sys	stemic use			
Mycamine	J02AX05	Micafungin	Other antimycotics for systemic use	Not genotoxic	Foci of altered hepatocytes in 6-month toxicit study in rats - developing into tumours durin recovery
ATC code J05 Antivir	als for system	ic use			
Vistide	J05AB12	Cidofovir	Antivirals for systemic use	Genotoxic	Positive in repeat-dose toxicity studies in rate
ATC code L01 Anti-n	eoplastic agen	its			
Xagrid	L01XX35	Anagrelide	Other antineoplastic agents	Not genotoxic	Positive in 12-month toxicity study in rats
ATC code V03 All oth	ner therapeutio	c products			
Savene	V03AF02	Dexrazoxane	Detoxifying agents for antineoplastic treatment	Genotoxic	Positive in 12-month toxicity study in mice and rats (NCI study)

that are known to be clastogenic, i.e. the nucleoside/nucleotide reverse transcriptase inhibitors and the non-nucleoside reverse transcriptase inhibitors. The carcinogenicity findings observed for these compounds and their potential relevance to humans according to the EPAR and SPC are presented in Table 8.

3.3.2.2. Compounds with rodent-specific or species-specific tumour findings. A high number of tumour findings in rodents were considered to be of no relevance for humans since a species- or rodent-specific mechanism has been identified (Greaves, 2007). These findings are unlikely to pose any carcinogenic risk to humans. Active substances (INN) for which a species- or rodent-specific mechanism was identified in carcinogenicity studies are presented in Table 9.

Liver tumours in mice and rats and thyroid gland follicular cell tumours in rats as a consequence of hepatic microsomal enzyme induction were found most frequently, followed by tumours of the endocrine system including endocrine glands (pituitary gland, adrenal gland), male and female reproductive organs (testes, ovary, uterus) and mammary gland for which rodents are particularly sensitive (Greaves, 2007).

Most of the mechanisms identified were either relevant for both mice and rats, e.g. liver tumours due to hepatic enzyme induction or tumours of endocrine and reproductive system due to disturbances of the hypothalamic–pituitary–gonadal axis, or they were unique to the rat, e.g. thyroid gland follicular cell tumours. Only few tumours were considered to be mouse-specific (Greaves, 2007) (Table 9).

For 38/94 (40%) of the compounds listed in Table 9, tumour findings were exclusively attributable to a rodent-specific mechanism. For these compounds, regulatory actions are not required and wordings indicating that the compounds pose no carcinogenic risk to humans or that the relevance of the tumour findings to humans is minor or limited can be found in the SPC Section 5.3 (for details see Table 10).

3.3.2.3. Compounds with tumour findings due to exaggerated pharmacodynamic effects or secondary to toxic damage. Tumour development related to long-term administration of supraphysiological or toxic doses of compounds is frequently observed in rodent carcinogenicity studies. Active substances (INN) which fall into this category are shown in Table 11. Examples include liver and kidney tumours secondary to hepatic or renal toxicity and lymphomas following administration of immunosuppressive compounds (Greaves, 2007). The mechanisms of carcinogenicity found in rodents are principally also relevant to humans, however, it is unlikely that such tumours will be induced at therapeutic doses.

For many compounds of this group, a sufficiently high safety margin in terms of systemic exposure has been demonstrated in toxicokinetic evaluations (see Section 3.3.2.6). No safety margin has been established for micafungin, tacrolimus, leflunomide, sirolimus, abatacept and amprenavir. The potential relevance of the tumour findings in animals has been included in SPC sections 4.4, 4.8 and/or 5.3 (for details see Table 10).

3.3.2.4. Compounds with photo co-carcinogenic potential. Topical application of tacrolimus (Protopic) shortened the time to skin tumour development induced by UV radiation in albino hairless mice. The underlying mechanism was considered to be systemic immunosuppression based on high exposure levels observed in the animals.

It was included in the SPC Section 5.3 that a risk for humans cannot be completed ruled out as the potential for local immunosuppression with the long-term use of tacrolimus is unknown. A warning to avoid exposure of the skin to sunlight during use of the ointment was included in Section 4.4 of the SPC (see Table 10).

3.3.2.5. Compounds with tumour findings for which the relevance for humans could not be established. This heterogeneous group comprises active substances (INN) with carcinogenicity findings that were either not considered treatment-related or compounds with tumour findings of unknown relevance to humans. An assessment of tumour findings for all compounds with positive carcinogenicity studies and their potential relevance to humans and the corresponding SPC wording is presented in Table 10.

3.3.2.6. Compounds with a high safety margin in terms of systemic exposure. For a considerable number of active substances (INN), systemic exposures in rodents as determined in toxicokinetic assessments were found to be sufficiently in excess of exposure levels at human therapeutic doses (Table 12). Therefore, it was considered that no regulatory actions are required for these medicinal products. Similar statements were included in the SPC Section 5.3 to indicate the large differences in exposure between rodents and humans at therapeutic doses and the low relevance

11

ARTICLE IN PRESS

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 6

Active substances (INN) with negative carcinogenicity data.

terve substances (intr) with negative carenogenieity data.
Active substance
Negative in long-term carcinogenicity studies in mice and rats
Orlistat
Saxagliptin
Nateglinide
Sapropterin
Clopidogrel
Iloprost
Ivabradine
Ambrisentan
Tolvaptan
Irbesartan
Telmisartan
Amlodipine besylate
Valsartan
Nicotinic acid
Eflornithine
Raloxifene hydrochloride
Fesoterodine
Sildenafil
Tadalafil
Vardenafil
Cinacalcet
Saquinavir
Lamivudine
Adefovir dipivoxil
Emtricitabine
Raltegravir
Mycophenolate mofetil
Thalidomide
Ibandronic acid
Alendronate sodium
Levetiracetam
Zonisamide
Lacosamide
Zaleplon Rivastigmine
Duloxetine
Memantine
Riluzole
Fluticasone furoate
Travoprost
Bimatoprost
Emedastine
Olopatadine
*
Negative in a long-term carcinogenicity study
in rats and a transgenic mouse study
Aliskiren
Deferasirox
Negative in a long-term carcinogenicity study in mice
Imiquimod
Capecitabine
Desloratadine and Pseudoephedrine
Negative in a long-term carcinogenicity study in rats
Levodopa/Carbidopa
Negative in a transgenic mouse study

Capsaicin

of the tumours observed in carcinogenicity studies (for details see Table 10).

3.3.2.7. Product specific assessments of carcinogenic potential. As stated in the ICH S6 guideline, standard rodent carcinogenicity studies are generally inappropriate for biotechnology-derived pharmaceuticals. However, an assessment of the carcinogenic potential may be needed depending on the duration of treatment and the biological activity of the products, e.g. monoclonal antibodies targeting immune functions for the treatment of chronic diseases like rheumatoid arthritis or psoriasis.

When there is a concern about the carcinogenic potential of such products, a variety of approaches may be considered to eval-

Table 7

Active substances (INN) with positive or equivocal genotoxicity findings.

Active substance	Carcinogenic potential
Lamivudine Adefovir dipivoxil Mycophenolate mofetil Capecitabine Riluzole Sapropterin	Negative in long-term rodent carcinogenicity studies
Entacapone	Rat-specific mechanism of carcinogenicity identified
Ribavirin Cidofovir Stravudine Abacavir sulphate Tenofovir disoproxil Entecavir Zidovudine Dexrazoxane Rasagiline Hydrochlororothiazide Timolol	Positive in long-term rodent carcinogenicity studies

uate the risk. Examples include carcinogenicity testing with a murine analogue of a protein or the treatment of immunocompromised or tumour bearing animals to assess the tumour promoting potential of a product (Table 13).

If no product specific testing is feasible, monitoring of malignancies will be a part of the comprehensive risk management plan of such products.

4. Discussion

Carcinogenicity data of medicinal products for human use that have been authorised via the CP between 1995 and 2009 were evaluated using EPARs and SPCs. In terms of reference medicinal products, carcinogenicity data have been generated for 159 out of 375 centrally authorised products (42%). In terms of active substances (INN), carcinogenicity data, either from long-term rodent carcinogenicity studies, transgenic mouse studies or repeat-dose toxicity studies, were available for 144 individual compounds (see Table 1). Out of the 144 compounds tested for carcinogenicity, 18 (12.5%) exhibited potential genotoxic properties.

With the exception of compounds for which DNA interactions are not expected, e.g. biotechnology-derived pharmaceuticals, genotoxicity studies are routinely required for all medicinal products for human use. Due to the established relationship between exposure to genotoxic compounds and carcinogenesis in man, genotoxicity testing is a fundamental part of carcinogenic risk assessment and compounds with proven genotoxic properties are usually not approvable for human use (ICH S2B guideline). Therefore, it is not surprising that the majority of centrally authorised products with carcinogenicity data exhibited negative genotoxicity findings either in a standard or a more comprehensive test battery. For most of the 18 compounds with potential genotoxic properties, the genotoxic potential was considered to be weak and an exposure threshold with regard to the induction of genotoxic effects appeared to exist. Thus, the relevance of the genotoxic properties to humans was either considered to be low due to a high safety margin in terms of exposure or the clinical benefit was considered to outweigh the potential carcinogenic risk (see Table 8).

Out of the 144 compounds tested for carcinogenicity, 50 (35%) yielded negative results and 94 (65%) were positive in at least one carcinogenicity study or in repeat-dose toxicity studies (Table 2). Based on the negative genotoxicity findings of the majority of compounds, an epigenetic mechanism of carcinogenicity was

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 8

Active substances (INN) for which a genotoxic mechanism of carcinogenicity is plausible.

Active substance	Type of tumour	Species	Relevance to humans according to EPAR/SPC
Cidofovir	Mammary adenocarcinoma	Rat	Potential human carcinogen
	Zymbal gland carcinoma		
Stravudine	Liver tumours	Mouse and rat	No relevant risk due to high safety margin
	Urinary bladder carcinoma	Rat	
Abacavir sulphate	Tumours of the praeputial and clitoral glands	Mouse and rat	Safety margin established Clinical benefit
	Liver tumours	Rat (f)	outweighs potential carcinogenic risk
	Urinary bladder tumours		
	Lymph node tumours		
	Subcutis haemangiosarcoma		
Zidovudine	Vaginal tumours	Mouse and rat	Relevance uncertain, but clinical benefit outweighs potential carcinogenic risk
Entecavir	Lung tumours	Mouse	Relevance uncertain, but clinical benefit outweighs
	Vascular tumours	Rat	potential carcinogenic risk
	Salivary gland tumours (f)		
	Liver tumours (m)		
	Brain tumours (glioma) (m)		
	Pancreas tumours		
	Skin fibroma (f)		
	Zymbal gland carcinoma (f)		
	Liver tumours (f)		
	Uterine haemangiosarcoma (f)		
Tenofovir disoproxil	Lipoma (m)	Rat	Relevance uncertain, but clinical benefit outweighs
	Uterus polyps (f)	Mouse	potential carcinogenic risk
	Duodenal tumours		
	Liver adenoma (f)		
Dexrazoxane	Haematopoietic neoplasms	Mouse (f)	Known relevance, but clinical benefit outweighs
	Uterine adenoarcinoma	Rat (f)	potential carcinogenic risk
Rasagiline	Lung adenoma and carcinomaAQ	Mouse	No relevant risk due to high safety margin
Timolol	Adrenal pheochromocytoma	Rat (m)	No relevant risk due to high safety margin
	Pulmonary tumours	Mouse (f)	
	Uterine polyps		
	Mammary gland tumours		

m: Males; f: Females.

Table 9

Active substances (INN) with a species- or rodent-specific mechanism of carcinogenicity.

Active substance	Tumour findings	Species	Mechanism of carcinogenicity*
Pantoprazole Aprepitant Repaglinide Prasugrel Bosentan Voriconazole Ritonavir Fosamprenavir Tipranavir Darunavir Lopinavir/Riponavir Nevirapine Etravirine Eslicarbazepine acetate Stiripentol Agomelatide	Liver adenoma and carcinoma	Rodent	Hepatic microsomal enzyme induction
Pantoprazole Aprepitant Repaglinide Bosentan Voriconazole Indinavir Nelfinavir Fosamprenavir Tipranavir Darunavir Maraviroc Melatonin	Thyroid gland follicular cell adenoma and carcinoma	Rat	Hepatic microsomal enzyme induction Faster clearance of thyroxin and subsequent TSH elevation
Vildagliptin	Mammary gland tumours	Rat	Disturbance of the hypothalamic- pituitary-gonadal axis
Olanazapine Timolol Dronedarone	Mammary gland tumours	Rodent	Disturbance of the hypothalamic- pituitary–gonadal axis Increased prolactin

ARTICLE IN PRESS

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 9 (continued)

Active substance	Tumour findings	Species	Mechanism of carcinogenicity*
Aripiprazole	Mammary gland tumours Pituitary adenoma	Rodent	
Paliperidone	Mammary gland tumours Pancreas adenoma Pituitary gland adenoma	Rodent	
Norelgestromin/Ethinylestradiol	Mammary gland tumours	Rat	Oestrogenic effect in predisposed strains
Insulin aspart Insulin human (rDNA)	Mammary gland tumours	Rat	Mitogenic and growth promoting action of insulin
Lasofoxifene	Ovarian granulosa cell tumours Uterine polyps Leydig cell tumours Adrenal gland cortical tumours	Rodent	Disturbance of the hypothalamic- pituitary-gonadal axis Increased LH
Fulvestant	Ovarian granulosa cell tumours Leydig cell tumours	Rat	
Sirolimus	Leydig cell adenoma	Rat	
Pramipexole	Leydig cell adenoma	Rat	Disturbance of the hypothalamic-
Rotogotine	Uterus carcinoma Leydig cell adenoma	Rat	pituitary-gonadal axis Inhibition of prolactin
Tolcapone	Uterus carcinoma	Rat	Disturbance of the hypothalamic-
Buprenorphine/ Naloxone hydrochloride	Leydig cell adenoma	Rat	pituitary-gonadal axis
Active substance	Tumour findings	Species	Mechanism of carcinogenicity*
Palonosetron	Pituitary gland tumours Pancreas tumours Mammary gland tumours	Rat	Link between the serotonin and dopamine systems Inhibition of dopamine release
Bazedoxifene	Ovarian granulosa cell tumours	Rodent	Stimulation of ovarian follicle growth Class effect of SERMs
Toremifene	Ovary tumours Testes tumours Osteosarcoma	Mouse	Oestrogenic effect of anti-oestrogens
Posaconazole	Adrenal gland cortical and medullary tumours	Rat	Interruption of steroidogenesis with consequent increased secretion of ACTH, leading to cortical cell proliferation Adrenal medullary tumours as a consequence of altered calcium homeostasis Class effect of azole antifungals
Insulin glargine	Malignant fibrous histiocytoma	Rodent	Injection of solutions with non-neutral pH
Atosiban	Fibroma and fibrosarcoma	Rodent	Injection of irritating materials
Degarelix	Sarcoma	Rodent	injection of initiating materials
Eptotermin alfa	Sarcoma	Rodent	Implantation of solid material
Teriparatide Parathyroid hormone (rDNA)	Oseosarcoma	Rat	Bone anabolic effect of parathyroid hormone
Rufinamide	Osteoma	Mouse	Activation of a mouse-specific polyomavirus and retrovirus by fluoride ions
Exanatide Liraglutide	Thyroid gland C cell adenoma	Rat	Persistent activation of C cell GLP-1 receptors
Entacapone	Kidney adenoma and carcinoma	Male rat	$\alpha_{2\mu}$ globulin nephropathy
Indacaterol	Mesovarian leiomyoma	Rat	ß adrenergic stimulation
Pregabalin	Haemangiosarcoma	Mouse	Platelet changes and associated endothelial cell proliferation
Brinzolamide	Urinary bladder leiomyosarcoma	Mouse	Histomorphically unique smooth muscle tumour

TSH: Thyroid stimulating hormone.

LH: Luteinizing hormone.

ACTH: Adrenocorticotropic hormone.

SERM: Selctive oestrogen receptor modulator.

GLP-1: Glucagon-like peptide-1.

rDNA: recombinant DNA.

* According to Greaves, 2007.

likely for most of the compounds with positive carcinogenicity findings.

Two long-term rodent carcinogenicity studies were available for 116 compounds (81%), 44 of which were negative and 32 of which were positive in both mice and rats. Twenty-two compounds were positive in rats only and 18 were positive exclusively in mice (see Table 3). Data from one long-term carcinogenicity study in rats and a transgenic mouse model were available for eight compounds (6%). Two compounds showed negative results in one long-term carcinogenicity study in rats and a transgenic mouse study, while five were positive in the long-term rat study and negative in the transgenic mouse study. Only one compound was positive in both the long-term rat study and the transgenic mouse study (see Table 3). For 13 compounds (9%), carcinogenicity data were available in only one rodent species. Within this group, three compounds were negative in mice and one compound in rats,

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 10

Overview of active substances (INN) with tumour findings in carcinogenicity and repeat-dose toxicity studies.

Active substance	Tumour findings	Mechanism of carcinogenicity	Relevance for humans according to EPAR/SPC	SPC section 5.3
•	0	system and on the metabolism		
Pantoprazole	fundus) Liver Thyroid gland	Rodent-specific Secondary to elevated gastrin Rodent-specific Rodent-specific	Liver and thyroid gland tumours not relevant Stomach tumours not relevant due to high safety margin	Stomach tumours due to chronic high treatment of rats Liver tumours due to high metabolic rate of pantoprazole in the liver Thyroid gland tumours due to breakdown of thyroxine in the liver
ATC code A03Drug Prucalopride	s for functional gastrointestin Mouse: Mammary gland Rat: Liver (adenoma) Thyroid gland (follicular cells) Mammary gland (benign) Pituitary gland Pancreas (islet cells) Adrenal medulla (phaeochromocytoma)	al disorders No strong support for a non- genotoxic mechanism from mechanistic studies Genotoxic mechanism cannot be ruled out	Genotoxic mechanism relevant to humans cannot be ruled out	No special hazard for humans
ATC code A04 Anti Palonosetron	-emetics and anti-nauseants Rat:Pancreas Pituitary Mammary gland Adrenals Thyroid gland Liver Skin Tail	Mainly tumours of the endocrine system to which rodents are particularly susceptible Stimulation of dopamine release	Not relevant due to high safety margin	Tumour findings not considered relevant since high doses were employed in rats and single administration is to be used in humans
Aprepitant	Rat:Liver Thyroid gland (follicu- lar cells)	Rodent-specific Rat-specific	Not relevant	No special hazard for humans
ATC code A10 Drug Insulin glargine	g used in diabetes Mouse: Fibrous histiocytoma Rat: Fibrous histiocytoma	Rodent-specific	Not relevant	No special hazard for humans
Insulin aspart Insulin human (rDNA)	Rat: Mammary gland Rat: Mammary gland	Rat-specific Rat-specific	Not relevant Not relevant	No special hazard for humans No special hazard for humans
Metformin	Rat: Uterus (benign polyps)	No tumour promoting effect known from the literature	Unlikely to be relevant	No special hazard for humans
Glimepiride	Mouse: Pancreas (islet cells) Lung (adenoma) Rat: Uterus	Chronic pancreatic stimulation Unknown Unknown	Not relevant due to high safety margin	Carcinogenic effects observed only at exposures sufficiently in excess of human exposure or caused by a pharmacodynamic effect
Rosiglitazone	Rat: Adipose tissue (lipoma)	Overstimulation of adipocytes	Relevant in principle No safety margin	Increased colon tumours In an animal model for familial adenomatous polyposis Relevance of this finding is unknown, however, no evidence of colon tumours in lifetime studies in rodents
Pioglitazone	Rat: Urinary bladder	Irritation due to urinary calculi formation	Relevance unknown	Relevance of tumour finding is unknown
Sitagliptin	Rat: Liver	Secondary to hepatic toxicity	Not relevant due to high safety margin	Liver tumours secondary to hepatic toxicity not considered relevant due of high safety margin
Vildagliptin	Mouse: Mammary gland Blood vessels (haemangiosarcoma)	Rodent-specific Promoting effect on tumour commonly observed in mice	Not relevant due to high safety margin	No significant risk due to high safety margin
Repaglinide	Rat:Liver Thyroid gland (follicular cells)	Rodent-specific Rat-specific	Not relevant	No special hazard for humans
Exenatide	(C cells) (f)	Rat-specific	Not relevant	Tumours at plasma exposure 130-fold the human clinical exposure Incidence not statistically significant when adjusted for survival
Liraglutide	Mouse: Thyroid gland (C cells) Uterus (leioma/ leiosarcoma) Skin (sarcoma)	C cell tumours rodent-specific No dose-response relationship for leioma/leiosarcoma and mice very sensitive to this tumour Skin tumours situated around the microchip No relevant dose related effect for	and skin sarcoma were not considered related Pituitary carcinoma and	Thyroid C cell tumours in mice and rats were caused by a specific GLP-1 receptor mediated mechanism to which rodents are particularly sensitive The relevance for humans is likely to be low, but cannot completely ruled out

(continued on next page)

ARTICLE IN PRESS

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 10 (continued)

Active substance	Tumour findings	Mechanism of carcinogenicity	Relevance for humans according to EPAR/SPC	SPC section 5.3
	Rat:Thyroid gland (C cells) Pituitary gland (f) Uterus (polyps)	pituitary carcinoma and uterine polyps	unlikely to present a risk for humans	
Miglustat ATC code B Blood	ner alimentary drugs Mouse: Large intestine Rat: Testes (Leydig cells) and blood forming organs	Unknown Rat-specific mechanism established	Relevance of large intestine tumours unknown	A safety margin was established The relevance of carcinoma of the large intestine for humans cannot be completely ruled ou
ATC code B01 Anti Prasugrel	-thrombotic agents Mouse: Liver	Rodent-specific	Not relevant	Liver tumours considered secondary to hepatic enzyme induction The increase in liver tumours in mice is not considered a relevant human risk
ATC code C Cardio ATC code C01 Card Ranolazine		Genotoxic metabolite	Carcinogenic metabolite not found in humans	No relevant increases in the incidence of any tumour types were seen in carcinogenicity studies in mice and rats
ATC code CO2 Anti Bosentan	-hypertensives Mouse: Liver (m) Rat: Thyroid gland (m)	Rodent-specific Rat-specific	Not relevant	There was evidence for a mild thyroid hormonal imbalance induced in rats, but no evidence of bosentan affecting thyroid function in humans
Sitaxentan sodium	Rat:Adrenal medulla (phe- ochromcytoma) (m) Skin tumours (m)	Tumours probably not related	Tumours not considered related based on historical control data and statistical analyses	Sixatexan sodium was not carcinogenic
ATC code C09Agen Hydro- chlorothiazide	ts acting on the renin-angiote Mouse: Liver (m)	ensin system Unknown	Unlikely to be relevant	Extensive human experience with hydrochlorothiazi has failed to show an association between its use and an increase in neoplasms
ATC code C10 Lipio Colesevelam	d modifying agents Rat:Pancreas (islet cells) (m) Thyroid gland (C cells)	Not clinically relevant Slight increase considered incidental since thyroid adenoma are common in old rats	Not relevant due to high safety margin	Carcinogenic effects observed only at exposures sufficiently in excess of maximum human exposure indicating little relevance to clinical use
Laropiprant	Mouse: Testes	Tumours not considered related due to atypical absence of spontaneous tumours in controls	High safety margin	Laropiprant was not carcinogenic
ATC code D Derma				
Tacrolimus (topical)	er dermatological preparation Mouse: Lymphoma Hairless mouse photo- carcino-genicity: Skin tumours	s Systemic immunosuppressive effect	Potential for local immunosuppression unknown	In a dermal carcinogenicity study in mice, lymphom were observed in association with high systemic exposure In a photocarcinogenicity study i hairless mice, a reduction in time to skin tumour an an in crease in the number of tumours was observed risk for humans cannot be completely ruled out as th potential for local immuno-suppression with long- term use of tacrolimus ointment is unknown
ATC code G Genito ATC code G02 Oth Atosiban	Rat: Injection site	nones Rodent-specific	Not relevant	Atosiban was not carcinogenic
Norelgestromin/ Ethinyl estradiol	(fibroma/fibrosarcoma) Rat: Mammary gland	Rat-specific	Not relevant	No special hazard for humans
Lasofoxifene	Mouse: Adrenal cortex Ovary (granulose cells) Uterus (polyps) Testes (Leydig cells)Rat: Ovary	Rodent-specific Male rat specific expression of ERα versus ERß	Not relevant Relevance unknown	Although all of the observed tumours are believed t be the result of rodent-specific hormonal mechanism the relevance for humans is currently unknown
Bazedoxifene	Kidney (m) TgHras2 mouse model: Ovary (granulosa cells) Rat: Ovary (granulosa cells)	Rodent-specific	Not relevant	Ovary tumours are a class effect of SERMs, related to pharmacology in rodents when treated during their reproductive lives, when their ovaries are functiona and responsive to hormonal stimulation

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 10 (continued)

	Tumour findings	Mechanism of carcinogenicity	Relevance for humans according to EPAR/SPC	SPC section 5.3
ATC code G04 Uro	ologicals			
Darifenacin	Rat:Adrenal cortex (f) Blood vessels (haemangiosarcoma) (m)	Tumours not considered related	Tumour not considered related	No special hazard for humans
	nic hormonal preparations, ex uitary and hypothalamic horm Rat:Adrenal medulla (phaeochromocytoma) Skin (keratoacanthoma)(m)	cluding sex hormones and insulins iones and analogues Promotion of a common spontaneous tumour due to mitogenic/anti-apoptotic effect Indirect effect due to effect on calcium metabolism, blood glucose, body weight and food consumption	Relevance unknown	An increased incidence of pheochromo-cytoma, keratoacanthoma in the skin and mammary gland carcinoma were observed in the rat carcinogenicity study
ATC code H05 Cal Teriparatide	cium homeostasis Rat: Bone (osteosarcoma)	Rat-specific	Not relevant	Due to the differences in bone physiology in rats and humans, the clinical relevance of
Parathyroid hormone (rDNA)	Rat: Bone (osteoma/ osteosarcoma)	Rat-specific	Not relevant	bone tumours is probably minor Due to the differences in bone physiology in rats and humans, the clinical relevance of bone tumours is probably minor
ATC code J Anti-ir	fectives for systemic use			
	-mycotics for systemic use Mouse: Liver Rat: Liver	Rodent-specific	Not relevant	No special hazard for humans
Posaconazole	Rat: Adrenal cortex Adrenal medulla (pheochromocytoma)	Rat-specific	Not relevant	No special hazard for humans
Micafungin ATC code 105 Anti	Rat: Liver	Secondary to hepatotoxicity	Relevant since no safety margin could be established	SPC Sections 4.4 and 5.3: Foci of altered hepatocytes were observed in rat repeat-dose toxicity studies Increased tumour rates were observed at the end of a 12-month recovery period A reliable safety margin could be established The relevance of the tumour finding for the therapeutic use cannot be excluded Liver function should be carefully monitored during treatment Early discontinuation in the presence of elevated AST/ALT is recommended
Cidofovir	Rat:Mammary gland Zymbal's gland	Genotoxic	Relevant	Tumours were observed in rats at subtherapeutic plasma levels and within3 months of treatment SPC section 4.4: Cidofovir should be considered a potential carriagene in humans
Ribavirin	5 0 ()	Increased tumour incidence in females most likely due to	Not relevant	carcinogen in humans Carcinogenic potential in humans is unlikely
Indinavir	Rat: Thyroid gland	increased survival rate Rat-specific	Not relevant	Tumours probably related to an increase in release TSH secondary to an increase in thyroxin clearance
Ritonavir	Mouse: Liver (m)	Rodent-specific	Not relevant	The relevance of the finding is likely to be limited Species-specific tumourigenic potential, which is regarded as of no relevance for humans
Nelfinavir	Rat: Thyroid gland	Rat-specific	Not relevant	Treatment of rats with nelfinavir produced effects consistent with enzyme induction, which predispos rats, but not humans, to thyroid neoplasms The weight of evidence indicates that nelfinavir is
				unlikely to be a carcinogen in humans
Amprenavir	Mouse: Liver (adenoma) (m) Rat: Liver (adenoma) (m)	Secondary to hepatotoxicity	Relevance unknown	unlikely to be a carcinogen in humans The mechanism for the tumour findings was not elucidated The increased incidence was reported with a low safety margin and the clinical relevance in humans in unknown It should be considered that liver changes were also seen in repeat-dose toxicity studies in rats and dog
Amprenavir Lopinavir/ Ritonavir	(m)	Secondary to hepatotoxicity Rodent-specific	Relevance unknown Not relevant	The mechanism for the tumour findings was not elucidated The increased incidence was reported with a low safety margin and the clinical relevance in humans in unknown It should be considered that liver changes were also

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 10 (continued)

Active substance	Tumour findings	Mechanism of carcinogenicity	Relevance for humans according to EPAR/SPC	SPC section 5.3
	Uterus			The incidence of uterus tumours was slightly increased over concurrent controls, but was within background range for female rats The relevance of the uterus tumours for humans is uncertain There is no evidence to suggest that the
Atazanavir sulphate	Mouse: Liver (adenoma) (f)	Secondary to hepatotoxicity	Not relevant at therapeutic exposures	tumour findings are of clinical significance Tumours likely to be secondary to cytotoxic liver changes and considered to have no relevance for humans at therapeutic exposures
Tipranavir	Mouse: Liver Rat:Liver Thyroid gland	Rodent-specific Rat-specific	Not relevant	Species-specific tumourigenic potential, which is regarded as of no clinical relevance
Darunavir	Mouse: Liver Rat:Liver	Rodent-specific Rat-specific	Not relevant	The observed liver and thyroid gland tumours are considered to be of limited relevance to humans
Stravudine	Thyroid gland (m) Mouse: Liver Rat:Liver Urinary bladder	Genotoxic	Not relevant due to high safety margin	Tumours were observed at very high exposure levels suggesting an insignificant carcinogenic potential in clinical therapy
Abacavir sulphate	Mouse: Preputial gland Clitoris glandRat: Preputial gland Clitoris gland Thyroid gland (m) Liver (m) Urinary bladder (m) Lymph nodes (m) Subcutis (m)	Genotoxic	Safety margin established Clinical benefit outweighs carcinogenic risk	Systemic exposure at the no effect level was equivalent to 3–7 times the human systemic exposure during therapy While the carcinogenic potential in humans is unknown, these data suggest that a carcinogenic risk outweighed by the potential clinical benefit
Tenofovir disoproxil	Mouse: Duodenum Liver (adenoma) (f)Rat: Adipose tissue	Genotoxic Duodenal tumours in mice due to formalaldehyde released from tenofovir disoproxil	Tumours in rats not considered related Tumours in mice not considered to present a significant carcinogenic risk for humans	Low incidence of duodenal tumours in mice, considered likely related to high concentrations of tenofovir disoproxil in the gastrointestinal tract Findings unlikely to be relevant to humans
	(lipoma) (m) Uterus (polyps)			
Entecavir	Mouse: Lung Blood vessels (f) Salivary gland (f) Liver (m)Rat: Brain (glioma) Pancreas (acinar cells) (m) Skin (fibroma) (f) Zymbal's gland (f)	Genotoxic	Key event in lung tumour development species-specific Predictivity of findings for humans is unknown	Lung tumours in mice were preceded by pneumocyte proliferation which was not observed in rats, dogs or monkeys Increased incidences of other tumours were seen only at high life-time exposures, however, the effect levels could not be precisely established Predictivity of the findings for humans is not known
Felbivudine	Uterus Rat:Pancreas (acinar cells)	Size of the effects and lack of dose response suggested that findings are incidental	Not relevant	No special hazard for humans
Nevirapine	Mouse: Liver Rat: Liver	Rodent-specific	Not relevant	Liver tumours are most likely to nevirapine being a strong inducer of liver enzymes
Efavirenz	Mouse: Liver (f) Lung (f)	Unknown	Relevance unknown, but clinical benefit outweighs potential carcinograpic risk	While the carcinogenic potential in humans is unknown, the data suggest that the clinical benefit outweighs the potential carcinogenic risk to human
Etravirine	Mouse: Liver (f)	Rodent-specific	carcinogenic risk Not relevant	Liver tumours generally considered to be rodent-specific, associated with liver enzyme
Dseltamivir	Rat:Blood vessels (hae- mangioma/ haemangiosarcoma) Lymphoid system (m) Epithelia (f)	Typical tumours of rodent strain used	Findings in rats of minor significance	induction, and of limited relevance to humans Trend towards a dose-dependent increase in the incidence of some tumours that are typical for the rodent strains used Considering the margin of exposure in relation to th expected exposure in the human use, these findings not change the risk-benefit in the adopted indicatio
Zidovudine	Mouse: Vagina Rat: Vagina	Genotoxic	Relevance for humans is uncertain due to metabolic	An intravaginal carcinogenicity study comfirmed that vaginal tumours were the results of long-term
			differences between rodents and humans	exposure of the vaginal epithelium to high concentrations of unmetabolised zidovudine in urin

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 10 (continued)

Active substance	Tumour findings	Mechanism of carcinogenicity	Relevance for humans according to EPAR/SPC	SPC section 5.3
	Bile duct (cholangi- oma/ cholangiosarcoma)	Unknown	Not relevant due to high safety margin	human relevance Bile duct tumours in rats were reported at a system exposure at least 15 times the expected human exposure
	eoplastic and immunomodula	ting agents		
ATC code LO1 Anti Gefitinib	-neoplastic agents Mouse: Liver (adenoma) Rat:Liver (adenoma) Mesenteric lymph nodes (haemangiosar-	Unknown	No safety margin established Relevance unknown	Liver adenoma and mesenteric lymph node haemagiosarcoma were observed in rats Liver adenoma were also observed in mice The clinical relevance of these findings is unknown
Everolimus	coma) (f) Mouse: Leukaemia (granulocytic)	Unknown	but clinical benefit outweighs	Carcinogenicity studies in mice and rats did not indicate any tumourigenic potential
Celecoxib	Mouse: Blood vessels	Tumour incidences appeared to be with values of historical controls	potential carcinogenic risk No safety margin established Clinical benefit outweighs carcinogenic risk	No information presented
	(haemangiosarcoma) (f) Pituitary (f)Rat: Liver (m)			
Anagrelide		Exaggerated pharmacological effect Hepatic enzyme induction	Not relevant due to high safety margin	Adrenal medulla and uterus tumours were observed at high exposure levels There is no clinical evidence that the findings are of relevance to human use
ATC code LO2 Endo Foremifene	ocrine therapy Mouse:OvaryTestesBone	Mouse-specific	Not relevant	Little relevance for the safety in man, where
Fulvestrant	Rat:Ovary (granulosa cells) Testes (Leydig cells)	•	Not relevant	toremifene acts mainly as an anti-oestrogen Induction of tumours is consistent with pharmacology-related endocrine feedback alteration
				These findings are not of clinical relevance for the treatment of postmenopausal women with advance breast cancer
Degarelix	Mouse: Liver (adenoma) Lung (adenoma) (f) Injection site (sar- coma)Rat: Lymph nodes (haemangiosar- coma) (f)	Unknown Rodent-specific Not considered related	Unknown Not relevant Probably not relevant due to low incidence and no concurrent increase in males	No special hazard for humans
ATC code LO4 Imm	••			
Leflunomide	Mouse: Lymphoma (m) Lung (f)	Immunosuppression Unknown	Relevant Relevance unknown	Malignant lymphoma observed in male mice were considered to be due to the immuno-suppressive activity The relevance of the lung tumours in female mice is uncertain. SPC section 4.8: The risk of lymphoproliferative disorders is increase with use of some immuno-suppressive agents
Sirolimus	Mouse: Lymphoma Leukaemia (f) Liver (m) Rat: Testes (Leydig cells)	Immunosuppression Rat-specific	Relevant Not relevant	Lymphoma secondary to chronic use of immunosuppressive agent can occur and have been reported in patients in rare instances Testes tumours were considered to be due to a species-specific response to LH levels and of limited clinical relevance
Abatacept	Mouse: Lymphoma Mammary gland (f)	Decreased control of viral infections due to immunosuppression	Relevant	Malignant lymphoma and mammary tumours in mice may be associated with decreased control of murine leukaemia virus and mouse mammary tumour virus, respectively, in the presence of long-term immunomodulation The relevance of these findings to the clinical use of abatacept is unknown SPC section 4.4 and 4.8: Immunosuppression increases the susceptibility
Facrolimus (systemic)	Mouse (topical application): Lymphoma ulo-skeletal system	Systemic immunosuppressive effect	Relevant	to the development of lymphoma and other malignancies In mice, topical administration of tacrolimus was associated with high systemic exposure levels resulting in the formation of lymphoma SPC section 4.4 and 4.8: Increased risk of malignancies secondary to immunosuppression

ATC code M05 Drugs for treatment of bone diseases

(continued on next page)

ARTICLE IN PRESS

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 10 (continued)

substance	Tumour findings	Mechanism of carcinogenicity	Relevance for humans according to EPAR/SPC	SPC section 5.3
Zoledronic acid	Mouse: Harderian gland	Unknown	Tumour findings not	Carcinogenicity studies did not provide any
Eptotermin alfa	Rat: Implantation site (sarcoma)	Rodent-specific	considered relevant Not relevant	evidence of a carcinogenic potential Sarcoma in rats was associated with the long-term presence of heterotopic bone Solid state carcinogenicity is frequently observed in rats when solid materials are implanted subcutaneously There is evidence to suggest that heterotopic
Strontium ranelate	Rat: Thyroid gland (C cells) (m)	Incidences within historical control range	Not related	ossification is not linked to sarcoma in humans No special hazard for humans
ATC code N Nervo				
ATC code N03 Ant Rufinamide	Mouse: Bone (osteoma)	Activation of a mouse-specific virus by fluoride ions	Not relevant	Osteomas were considered a result of activation of a mouse-specific virus by fluoride ion released during oxidative metabolism of rufinamide
Eslicarbazepine	Liver Mouse: Liver	Rodent-specific	Not relevant	Liver tumours consistent with an induction
acetate Pregabalin	Mouse: Blood vessels (haemangioma)	Mouse-specific	Not relevant	of hepatic microsomal enzymes Platelet changes and associated endothelial proliferation were not present in rats or humans
Stiripentol	Mouse: Liver	Rodent-specific	Not relevant	No evidence to suggest an associated risk to humans Special susceptibility of the mouse liver to tumour formation in the presence of hepatic enzyme induction Liver tumours were not considered to indicate a risk tumourigenicity in humans
ATC code N04 Ant Pramipexole	i-Parkinson drugs Rat: Testes (Leydig cells)	Rat-speciific	Not relevant	Tumours can be explained by a prolactin-inhibiting effect of pramipexole
Rotogotine	Rat:Testes (Leydig cells) Uterus	Rat-specific	Not relevant	The finding is not clinically relevant to man Tumours are well-known effects of dopamine-agonis in rats and assessed as not relevant to man
Rasagiline	Mouse: Lung	Genotoxic	Not relevant due to high safety margin	Lung tumours were observed in mice at systemic exposures 144–213 times the expected plasma exposure in humans Renal epithelial tumours were observed in the mid- and high-dose groups in rats, however, there was no evidence of renal toxicity in the low-dose group Uterine adenocarcinoma were observed in
Folcapone	Rat:Kidney Uterus	Secondary to nephrotoxicity Species-specific	Safety factor was established Not relevant	
Entacapone	Rat: Kidney (m)	Male rat-specific	Not relevant	the high-dose group in rats No special hazard for humans
ATC code N05 Psy Olanzapine	<i>choleptics</i> Mouse: Mammary gland (f) Rat: Mammary gland (f)	Rodent-specific	Not relevant	Based on the results of carcinogenicity studies in mice and rats, it was concluded that
Aripiprazole	Mouse: Mammary gland (f) Pituitary gland (f)Rat: Mammary gland (f)	Rodent-specific Cytotoxicity due to increased oxidative stress	Mammary and pituitary tumours not relevant Safety margin established for adrenocortical tumours	olanzapine is not carcinogenic Carcinogenic effects observed at doses/exposures sufficiently in excess of the maximum human dose/exposure, indicating that these effects were of limited or no relevance to clinical use
Paliperidone	Adrenal cortex (f) Mouse: Mammary gland (f) Pituitary gland (f)Rat: Mammary gland (m + f) Pancreas (islet cells)	Rodent-specific	Not relevant	The observed tumours of the pituitary gland, endocrine pancreas and mammary gland can be related to prolonged dopamine antagonism and hyperprolactinaemia The relevance of these tumours in terms of human risk is unknown
Melatonin	(m) Rat:Pituitary gland (m) Thyroid gland (follicu- lar cells)	Pituitary tumours common in rats Statistical significance of pituitary tumours below the value of triggering concern Thyroid tumours rat-specific	Not relevant	The carcinogenicity study in rats did not reveal any effect which may be relevant for humans
ATC code N06 Psy				
Agomelatine	Mouse: Liver Rat:Liver (m) Mammary gland (fibroadenoma) (m + f)	Liver tumours rodent-specific Mammary gland tumours unknown	Not relevant due to high safety margins	Liver tumours were most likely related to enzyme induction specific to rodents The frequency of mammary fibroadenoma in rats was
				increased with high exposures

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 10 (continued)

Active substance	Tumour findings	Mechanism of carcinogenicity	Relevance for humans according to EPAR/SPC	SPC section 5.3
tartrate	(hibernoma)	stimulation of brown adipocytes	at birth, after which its metabolic activity and thermogenic capacity decreases to minimal levels. Therefore, the risk for humans is	incidence of hibernoma in male rats
Buprenorphine	hydrochloride/naloxone	Rat: Testes (Leydig cells)	theoretical and probably non- existent Rat-specific	Not relevant
Statistically significant increases in the incidence of Leydig cell adenoma	hydrochloride			
were observed in rats at all dose groups at exposure multiples of 3–75 times				
odium oxybate	Mouse (γ-butyrolactone): Adrenal medulla (pheochromocytoma) (f) Rat (sodium oxybate): Pituitary gland (f)	Tumours slightly increased and difficult to interpret due to high mortality Doubtful statistical significance and incidence was at the upper bound of historical controls	Unlikely relevant	In a mouse study with γ -butyrolactone, results were equivocal due to a slight increase of pheochromocytoma, which was difficult to interpret due to high mortality In a rat study with sodium oxybate, no compound-related tumours were observed
TC code S Sensor TC code S01 Oph				
rinzolamide	Mouse: Urinary bladder (leiomyosarcoma) (f)	Mouse-specific	Not relevant	Smooth muscle tumour was considered unique to mice
ïmolol	Mouse: Lung (f) Uterus (benign polyps) Mammary glandRat: Adrenal medulla (pheochromcytoma)	Unknown UnknownRodent-specific Unknown	Not relevant due to high safety margin	No special hazard for humans
TC code V Variou	s other therapeutic products			
Gevelamer (carbonate)	Mouse: Lymphoma Rat: Urinary tract and bladder (m)	Not considered related to treatment Due to crystalline deposits in the	Tumours not considered related Relevance unknown	In rats, there was an increased incidence of urinary bladder transitional cell papilloma in males of the high-dose group
Dexrazoxane	Mouse: Haematopoietic tumours (f) Rat: Uerus	urine Clastogenic	Probably relevant	Secondary malignancies in mice and rats after prolonged administration
Not yet classified Dronedarone	Mouse: Haemolymphoreticular system (sarcoma) Mammary gland (f) Harderian gland (f)Rat: Mesenteric lymph nodes (haemangioma)	Mammary tumours rodent- specific Haemangiosarcoma unknown	Not relevant due high safety margin	None of the tumour findings were considered relevant for humans
ndacaterol	Rat: Ovary (leiomyoma)	Rat-specific	Incidence of tumour not increased in women following use of adrenergic agents	Similar findings in rats reported for other B_2 agonists Safety margin in terms of exposure

ER: Oestrogen receptor.

AST: Aspartate aminotransferase.

ALT: Alanine aminotransferase.

TSH: Thyroid stimulating hormone.

LH: Luteinizing hormone.

ARTICLE IN PRESS

A. Friedrich, K. Olejniczak/Regulatory Toxicology and Pharmacology xxx (2011) xxx-xxx

Table 11

Active substances (INN) with carcinogenic effects attributable to exaggerated pharmacodynamic effects or toxic damage.

Active substance	Tumour findings	Species	Mechanism of carcinogenicity [*]
Pantoprazole	Stomach squamous papilloma and carcinoma	Rat	Secondary to massively elevated serum gastrin levels
Glimepiride	Pancreatic islet cell adenoma	Rat	Chronic islet cell stimulation
Sitagliptin	Liver tumours	Rat	Secondary to hepatotoxicity
Atazanavir sulphate			
Amprenavir		Mouse	
Micafungin		Mouse and rat	
-		Rat	
Tolcapone	Renal epithelial tumours	Rat	Secondary to nephrotoxicity
Tacrolimus	Lymphoma	Mouse	Due to immunosuppressive action
Leflunomide			
Sirolimus			
Abatacept			
Pioglitazone	Urinary bladder transitional cell tumours	Male rat	Irritation due to urinary calculi formation
Sevelamer	-		-

* According to Greaves, 2007.

while two and seven compounds were positive in mice and rats, respectively (see Table 3). For one compound, the only carcinogenicity data available were from a transgenic mouse study, which showed negative results (see Table 3). Six compounds (4%) were tumourigenic in repeat-dose toxicity studies in rats (see Table 5). Out of the 94 compounds with positive findings in either carcinogenicity or repeat-dose toxicity studies, 33 compounds were positive in both mice and rats (35%), 40 were positive in rats only (43%) and 21 were positive in mice only (22%). Thus, the majority of positive carcinogenicity findings (78%) have been produced in rats.

A similar analysis of carcinogenicity data all pharmaceuticals (NCEs) that were submitted to the regulatory authorities from Germany and The Netherlands between 1980 and 1995 (including those which were withdrawn or not approved later on) was performed by Van Ousterhout et al. (1997). The analysis showed that 181 out of 221 compounds (approximately 82%) were tested in two rodent long-term carcinogenicity studies and 40 compounds (18%) were tested in either mice or rats (or the second species was replaced, e.g. by hamsters). When comparing the two evaluations, it is of note that the frequency of using two long-term carcinogenicity studies has not changed during the last 15 years and the acceptance of transgenic mouse models as a replacement of the second long-term study is considered to be poor.

In terms of positive tumour findings, Van Ousterhout et al. found that 106 out of 221 compounds (48%) were positive in at least one long-term carcinogenicity study. Approximately 44% positive pharmaceuticals were found in an evaluation of carcinogenicity studies in the FDA database and NTP rodent carcinogenicity database (Contrera et al., 1997).

Considerably more compounds with positive tumour findings, i.e. 94/144 (65%) were identified in the evaluation of the EPARs, although the classification of tumours was similar to that used by Van Ousterhout et al. A particular reason for the higher number of positive findings could not be determined.

In the evaluation by Van Ousterhout et al., 92 out the 106 compounds with positive carcinogenicity findings were positive in both mice and rats (34) or in rats only (58). Thus, approximately 87% of the compounds showed positive results in rats and only 13% were positive in mice, but not in rats. In the evaluation of the EPARs, the proportion of compounds that yielded positive results in rats was 78% (21/94). The results are consistent with the view that the rat is more sensitive towards carcinogenic effects than the mouse (Smith, 1996; Van Ousterhout et al., 1997).

As summarised in Table 10, most of the tumour findings observed in carcinogenicity studies in mice and/or rats were considered not to be relevant for humans. Among these were tumour findings for 38 compounds (40%) which were classified as speciesor rodent-specific (see Table 9). For all of these tumours, the plausibility of a species- or rodent-specific mechanism of carcinogenicity has been demonstrated by additional mechanistic evaluations including hormone measurements.

For 20 compounds (21%), high safety margins in terms of exposure between the NOAEL in rodents and the recommended therapeutic exposures in humans were established (see Table 12). This indicates the particular importance of toxicokinetic measurement with regard to carcinogenic risk assessment. The systemic exposures determined in rodents were at least five times and up to several thousand times higher than the clinical exposures achieved at maximum therapeutic doses. For most of these compounds, tumour findings in rodent carcinogenicity study were considered not to be relevant for the clinical situation due to demonstrated high exposure differences between rodents and humans (see Table 10 for SPC wordings). However, for certain compounds, e.g. the potentially clastogenic compound abacavir sulphate, a lower safety margin was considered to be acceptable based on the overall risk-benefit evaluation for the medicinal product (see Table 10 for SPC wording for abacavir sulphate).

For 11 compounds (11%), tumours observed in rodent carcinogenicity studies were either considered not related to treatment or were thought not to be relevant for humans. A number of tumours were considered incidental because they fell within the range of historical control data, due to a small effect size and lack of dose–response relationship or due to the fact that the tumours were typically observed in the rodents strains used. Some tumours were considered not relevant for humans based on available literature and clinical data that did not indicate a carcinogenic risk for humans, or based on likely differences in metabolism/concentrations between rodents and humans (for details see Table 10).

Tumours observed for 14 compounds (15%) were considered to be of unknown relevance for humans. For many of the compounds, tumour findings were described in the SPC Section 5.3 and it was stated that the relevance for humans is unknown. However, none of the findings triggered any further regulatory actions (see Table 10).

A potential carcinogenic risk for humans was established for eleven compounds (11%). These compounds have nevertheless been approved for clinical use based on a positive risk benefit assessment. Based on carcinogenic effects observed in repeat-dose toxicity studies in rats, the anti-retroviral agent cidofovir was labelled as a potential human carcinogen in the SPC section 4.4. The immunosuppressive compounds leflunomide, sirolimus, abatacept and tacrolimus² caused lymphoma in mouse carcinogenicity studies which are thought to be virus-related. It is well-

² Tacrolimus was counted twice as it is approved as topical product for the treatment of atopic dermatitis (ATC code D 11) and systemic treatment of transplant rejection (ATC code L04).

Table 12

Active substances (INN) with a high safety margin in terms of systemic exposure.

Active substance	Potential mechanism of carcinogenicity
Stravudine Abacavir sulphate Rasagiline Timolol	Genotoxicity
Pantoprazole Glimepiride Sitagliptin Atazanavir sulphate Tolcapone Anagrelide	Exaggerated pharmacodynamic effect or toxic damage
Palonosetron Maroviroc Dronedarone Agomelatine Colesevelam Laropiprant Miglustat Darifenacin Vildagliptin Aripiprazole	Unknown

Table 13

Biotechnology-derived products tested for carcinogenicity.

Reference medicinal product	International nonproprietary name (INN)	Results of mechanistic studies
NeoRecormon	Epoetin beta	Negative in a long-term mouse study with murine epoetin Negative in a rat study with implanted tumours and cyclophosphamide treatment
Remicade	Infliximab	Negative in a repeat-dose toxicity study with anti-mouse TNF a

documented that immunosuppressive agent can cause the development of virus-induced malignancies. Corresponding wordings were included in SPC section 4.4 and 4.8 for these compounds (see Table 10). The antifungal agent micafungin induced liver tumours in rats at exposure levels similar to those seen in humans. The carcinogenic effects of dexrazoxane in rodents were related to its clastogenic activity (see Table 10). For the tumours observed in rodent carcinogenicity studies with the anti-retroviral compound efavirenz and the anti-neoplastic compounds everolimus and celecoxib, the EPAR/SPC indicated that a potential carcinogenic risk is outweighed by their clinical benefit (see Table 10).

Trans-species carcinogenicity findings which are usually considered to pose a relatively greater risk to humans (Contrera et al., 1997) were rarely noted. Trans-species findings included vaginal tumours observed in carcinogenicity studies with zidovidine and liver adenoma observed in carcinogenicity studies with gefitinib. Vaginal tumours were attributed to high concentrations of unmetabolised zidovidine in the urine. The relevance to humans was however considered to be uncertain due to metabolic differences between rodents and humans. The relevance of liver adenoma caused by gefitinib for humans was unknown and a corresponding statement was included in the SPC section 5.3.

In summary, the present evaluation indicated that a high number of compounds contained in centrally approved medicinal products produced positive tumour findings in rodent carcinogenicity studies (94/144, 65%). The majority of the rodent carcinogenicity findings were considered not to be of relevance for humans (69/ 94, 73%). Genotoxicity, toxicokinetic and mechanistic studies provided important information with respect to the interpretation of rodent tumours findings and their potential relevance for humans.

The necessity for routinely conducting two long-term rodent carcinogenicity studies has been under discussion for many years. The relative individual contribution of mouse and rat carcinogenicity studies and whether the use of rats alone would result in a significant loss of information on carcinogenicity relevant to human risk assessment has been addressed by a number of surveys of data for human pharmaceuticals (ICH S1B guideline; Smith, 1996; Van Ousterhout et al., 1997; Contrera et al., 1997). The analyses led to the recommendation by ICH of conducting one long-term carcinogenicity study in rats which should be supplemented by a transgenic mouse assay or the neonatal rodent tumourigenicity model (ICH S1B guideline).

However, the present evaluation indicated that this approach has basically failed since the carcinogenic potential of the majority of compounds were still evaluated using two long-term carcinogenicity studies (see Table 1).

The evaluation of the EPARs confirmed that the rat was more sensitive than the mouse towards carcinogenic effects with the majority of compounds being positive in both mice and rats or rats alone (73/94, 78%). Although 21 compounds produced carcinogenic effects in mice only, most of the findings were considered not to be relevant for humans and consequently did not trigger any regulatory actions. For the development of lymphoma under treatment with immunosuppressive agents, the mouse was shown to be more sensitive than the rat. However, this is a well-documented phenomenon and considered to be virus-related (see Table 10).

5. Conclusions

The evaluation of carcinogenicity data of centrally authorised medicinal products revealed that for the majority of products two long-term rodent carcinogenicity studies were used for assessment of carcinogenic potential and that the acceptance of transgenic mouse models was low.

The evaluation showed that the majority (69/94, 73%) of positive carcinogenicity findings in rodents were considered not to be relevant for humans. The findings confirmed the results of previous similar reviews of carcinogenicity studies (Monro, 1996; Van Ousterhout et al., 1997).

It can be concluded from the current evaluation that tumour findings in rodents were largely not predictive for human use, particularly for compounds with hepatic enzyme inducing and compounds inducing hormonal disturbances. In addition, carcinogenicity studies were redundant for compounds with immunosuppressive properties due to their known carcinogenic potential in humans. This is consistent with findings from previous reviews (Monro, 1996).

Furthermore, the current analysis revealed that positive carcinogenicity findings in either mice or rats did not trigger any regulatory actions if there was no supportive evidence of their potential relevance for humans from genotoxicity, toxicokinetic or mechanistic studies.

In the current evaluation, a potential relevance for the human situation was established for only 11 compounds (11%) with positive carcinogenicity findings. These compounds were authorised based on a positive risk benefit assessment. It is of note that four of these compounds produced tumour findings in repeat-dose toxicity studies in rats (see Table 5). Four compounds were subjected to carcinogenicity testing despite their immunosuppressive properties which are known to allow the development of virus-related malignancies in both mice and humans (see Table 10).

The lack of accuracy of long-term rodent carcinogenicity studies for predicting human cancer risk has been criticised in the past

(Monro, 1996; Ennever and Lave, 2003). The current evaluation of the EPARs confirmed the poor predictivity of long-term rodent carcinogenicity studies for the human situation. Therefore, a revision of the current carcinogenicity testing strategy for pharmaceuticals is warranted.

As suggested by previous reviews of carcinogenicity studies (Alden et al., 1996; Van Ousterhout et al., 1997) and by the ICH S1B guideline, long-term carcinogenicity studies in the mouse are unlikely to add any significant value and should not be requested in the future. As suggested by the ICH S1B guideline, the long-term mouse study may be replaced by a transgenic mouse model. The acceptability of this strategy may be improved by a closer collaboration between regulatory agencies and pharmaceutical companies.

A recent compilation of rat chronic toxicity and 2-year carcinogenicity study data of both marketed and non-marketed compounds from a collaboration of 13 pharmaceutical companies demonstrated that rat chronic toxicity studies are good predictors of the negative outcome in long-term rat carcinogenicity studies provided that genotoxicity studies are negative and no preneoplastic changes or hormonal disturbances were observed in chronic rat studies. The evaluation of chronic rat toxicity studies has the potential to eliminate approximately 40% of the long-term rat carcinogenicity studies based on their predictivity for a negative outcome for rat tumour development (Reddy et al., 2010; Sistare, 2010).

Two-year rodent carcinogenicity studies are currently the most expensive and time-consuming animal tests required for pharmaceutical carcinogenicity assessment. Since these studies are largely not predictive of human cancer risk, both pharmaceutical companies and regulatory agencies should aim at their replacement. The collaborative assessment of existing carcinogenicity data from pharmaceutical companies utilising new approaches to identify potentially human relevant or irrelevant mechanisms of carcinogenicity including genetically modified animal models and *in vitro* carcinogenicity screening assays based on gene expression profiling (Vinken et al., 2008; Bercu et al., 2010) are likely to improve the current carcinogenicity testing paradigm without the need of long-term rodent carcinogenicity studies.

Conflict of interest

The authors confirm that they have no conflicts of interests that could inappropriately influence, or be perceived to influence, their work.

Guidelines

- ICH S1A: The need for carcinogenicity studies of pharmaceuticals. CPMP/ICH/140/ 95, July 1996.
- ICH S1B: Carcinogenicity: testing for carcinogenicity of pharmaceuticals. CPMP/ICH/ 299/95, March 1998.
- ICH S2B: Genotoxicity: A standard battery for genotoxicity testing of pharmaceuticals. CPMP/ICH/174/95.
- ICH S3A: Toxicokinetics: A Guidance for Assessing Systemic Exposure in Toxicology Studies CPMP/ICH/384/95, June 1995.
- ICH S6: Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. CPMP/ICH/302/95, March 1998.
- ICH S9: Nonclinical Evaluation for Anticancer Pharmaceuticals. EMEA/CHMP/ICH/ 646107/2008, November 2009.
- Note for guidance on carcinogenic potential. CPMP/SWP/2877/00, July 2002.
- Note for guidance on photosafety testing. CPMP/SWP/398/01, June 2002.
- Guideline on carcinogenicity evaluation of medicinal products for the treatment of HIV infection. EMEA/CHMP/SWP/194898/2006, December 2007.
- Guideline on the clinical development of medicinal products for the treatment of HIV infection. Doc. Ref. EMEA/CPMP/EWP/633/02, Revision 2, November 2008.

Literature References

- Alden, S.L., Smith, P.F., Piper, C.E., Brei, L., 1996. A critical appraisal of the value of the mouse cancer bioassay in safety assessment. Toxicol. Pathol. 24, 722–725.
- Bercu, J.P., Jolly, R.A., Flagella, K.M., Baker, T.K., Romero, P., Stevens, J.L., 2010. Toxicogenomics and cancer risk assessment: a framework for key event analysis and dose-response assessment for nongenotoxic carcinogens. Regul. Toxicol. Pharmacol. 58, 369–381.
- Contrera, J.F., Jacobs, A.C., DeGeorge, J.J., 1997. Carcinogenicity testing and the evaluation of regulatory requirements for pharmaceuticals. Regul. Toxicol. Pharmacol. 25, 130–145.
- Ennever, F.K., Lave, L.B., 2003. Implications of the lack of accuracy of the lifetime rodent bioassay for predicting human carcinogenicity. Regul. Toxicol. Pharmacol. 38, 52–57.
- Greaves, P., 2007. Histopathology of preclinical toxicity studies, third ed. Elsevier Inc., New York, London.
- Monro, A., 1996. Are lifespan rodent carcinogenicity studies defensible for pharmaceutical agents? Exp. Toxicol. Pathol. 48, 155–166.
- Reddy, M.V., Sistare, F.D., Christensen, J.S., DeLuca, J.G., Wollenberg, G.K., DeGeorge, J.J., 2010. An evaluation of chronic 6- and 12-month rat toxicology studies as predictors of 2-year tumor outcome. Vet. Pathol. 47, 614–629.
- Sistare F.D. (2010). Lessons learned from an analysis of pharmaceutical experience with decades of rat carcinogenicity testing. Abstract, Workshop presentation at the 49th Annual Meeting of the Society of Toxicology, Salt Lake City, Utah, USA.
- Smith, P.F., 1996. Third international conference on harmonisation of technical requirements for registration of pharmaceutical for human use - a toxicologist's perspective. Toxicol. Pathol. 24, 519–528.
- Van Ousterhout, J.P.J., van der Laan, J.W., de Waal, E.J., Olenjniczak, K., Hilgenfeld, M., Schmidt, V., Bass, R., 1997. The utility of two rodent species in carcinogenic risk assessment of pharmaceuticals in Europe. Regul. Toxicol. Pharmacol. 25, 6– 17.
- Vinken, M., Doktorova, T., Ellinger-Ziegelbauer, H., et al., 2008. The carcinoGENOMICS project: critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays. Mutat. Res. 659, 202–210.